Spaces:
Build error
Build error
File size: 22,364 Bytes
b65c5e3 3d3e7ab b65c5e3 3d3e7ab b65c5e3 3d3e7ab b65c5e3 3d3e7ab b65c5e3 3d3e7ab b65c5e3 3d3e7ab b65c5e3 3d3e7ab b65c5e3 3d3e7ab b65c5e3 9c37eb2 b65c5e3 3d3e7ab b65c5e3 9c37eb2 b65c5e3 3d3e7ab 9c37eb2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 |
import os
import re
from random import random
import torch
import pickle
import argparse
import numpy as np
from helper import *
from PIL import Image
import torch.nn as nn
import torch.optim as optim
from config.GlobalVariables import *
from tensorboardX import SummaryWriter
from SynthesisNetwork import SynthesisNetwork
from DataLoader import DataLoader
# import ffmpeg # for problems with ffmpeg uninstall ffmpeg and then install ffmpeg-python
L = 256
def get_mean_global_W(net, loaded_data, device):
"""gets the mean global style vector for a given writer"""
[_, _, _, _, _, _, all_word_level_stroke_in, all_word_level_stroke_out, all_word_level_stroke_length, all_word_level_term, all_word_level_char, all_word_level_char_length, all_segment_level_stroke_in, all_segment_level_stroke_out,
all_segment_level_stroke_length, all_segment_level_term, all_segment_level_char, all_segment_level_char_length] = loaded_data
batch_word_level_stroke_in = [torch.FloatTensor(a).to(device) for a in all_word_level_stroke_in]
batch_word_level_stroke_out = [torch.FloatTensor(a).to(device) for a in all_word_level_stroke_out]
batch_word_level_stroke_length = [torch.LongTensor(a).to(device).unsqueeze(-1) for a in all_word_level_stroke_length]
batch_word_level_term = [torch.FloatTensor(a).to(device) for a in all_word_level_term]
batch_word_level_char = [torch.LongTensor(a).to(device) for a in all_word_level_char]
batch_word_level_char_length = [torch.LongTensor(a).to(device).unsqueeze(-1) for a in all_word_level_char_length]
batch_segment_level_stroke_in = [[torch.FloatTensor(a).to(device) for a in b] for b in all_segment_level_stroke_in]
batch_segment_level_stroke_out = [[torch.FloatTensor(a).to(device) for a in b] for b in all_segment_level_stroke_out]
batch_segment_level_stroke_length = [[torch.LongTensor(a).to(device).unsqueeze(-1) for a in b] for b in all_segment_level_stroke_length]
batch_segment_level_term = [[torch.FloatTensor(a).to(device) for a in b] for b in all_segment_level_term]
batch_segment_level_char = [[torch.LongTensor(a).to(device) for a in b] for b in all_segment_level_char]
batch_segment_level_char_length = [[torch.LongTensor(a).to(device).unsqueeze(-1) for a in b] for b in all_segment_level_char_length]
with torch.no_grad():
word_inf_state_out = net.inf_state_fc1(batch_word_level_stroke_out[0])
word_inf_state_out = net.inf_state_relu(word_inf_state_out)
word_inf_state_out, _ = net.inf_state_lstm(word_inf_state_out)
user_word_level_char = batch_word_level_char[0]
user_word_level_term = batch_word_level_term[0]
original_Wc = []
word_batch_id = 0
curr_seq_len = batch_word_level_stroke_length[0][word_batch_id][0]
curr_char_len = batch_word_level_char_length[0][word_batch_id][0]
char_vector = torch.eye(len(CHARACTERS))[user_word_level_char[word_batch_id][:curr_char_len]].to(device)
current_term = user_word_level_term[word_batch_id][:curr_seq_len].unsqueeze(-1)
split_ids = torch.nonzero(current_term)[:, 0]
char_vector_1 = net.char_vec_fc_1(char_vector)
char_vector_1 = net.char_vec_relu_1(char_vector_1)
char_out_1 = char_vector_1.unsqueeze(0)
char_out_1, (c, h) = net.char_lstm_1(char_out_1)
char_out_1 = char_out_1.squeeze(0)
char_out_1 = net.char_vec_fc2_1(char_out_1)
char_matrix_1 = char_out_1.view([-1, 1, 256, 256])
char_matrix_1 = char_matrix_1.squeeze(1)
char_matrix_inv_1 = torch.inverse(char_matrix_1)
W_c_t = word_inf_state_out[word_batch_id][:curr_seq_len]
W_c = torch.stack([W_c_t[i] for i in split_ids])
original_Wc.append(W_c)
W = torch.bmm(char_matrix_inv_1, W_c.unsqueeze(2)).squeeze(-1)
mean_global_W = torch.mean(W, 0)
return mean_global_W
def get_DSD(net, target_word, writer_mean_Ws, all_loaded_data, device):
"""
returns a style vector and character matrix for each character/segment in target_word
n is the number of writers
M is the number of characters in the target word
L is the latent vector size (in this case 256)
input:
- target_word, a string of length M to be converted to a DSD
- writer_mean_Ws, a list of n style vectors of size L
output:
- all_writer_Ws, a tensor of size n x M x L representing the style vectors for each writer and character
- all_writer_Cs, a tensor of size n x M x L x L representing the corresponding character matrix
"""
n = len(all_loaded_data)
M = len(target_word)
all_writer_Ws = torch.zeros(n, M, L)
all_writer_Cs = torch.zeros(n, M, L, L)
for i in range(n):
np.random.seed(0)
[_, _, _, _, _, _, all_word_level_stroke_in, all_word_level_stroke_out, all_word_level_stroke_length, all_word_level_term, all_word_level_char, all_word_level_char_length, all_segment_level_stroke_in, all_segment_level_stroke_out,
all_segment_level_stroke_length, all_segment_level_term, all_segment_level_char, all_segment_level_char_length] = all_loaded_data[i]
available_segments = {}
for sid, sentence in enumerate(all_segment_level_char[0]):
for wid, word in enumerate(sentence):
segment = ''.join([CHARACTERS[i] for i in word])
split_ids = np.asarray(np.nonzero(all_segment_level_term[0][sid][wid]))
if segment in available_segments:
available_segments[segment].append([all_segment_level_stroke_out[0][sid][wid][:all_segment_level_stroke_length[0][sid][wid]], split_ids])
else:
available_segments[segment] = [[all_segment_level_stroke_out[0][sid][wid][:all_segment_level_stroke_length[0][sid][wid]], split_ids]]
index = 0
all_W = []
all_C = []
# while index <= len(target_word):
while index < len(target_word):
available = False
# Currently this just uses each character individually instead of the whole segment
# for end_index in range(len(target_word), index, -1):
# segment = target_word[index:end_index]
# print (segment)
segment = target_word[index]
if segment in available_segments: # method beta
# print(f'in dic - {segment}')
available = True
candidates = available_segments[segment]
segment_level_stroke_out, split_ids = candidates[np.random.randint(len(candidates))]
out = net.inf_state_fc1(torch.FloatTensor(segment_level_stroke_out).to(device).unsqueeze(0))
out = net.inf_state_relu(out)
seg_W_c, (h_n, _) = net.inf_state_lstm(out)
character = segment[0] # take the first character of the segment?
# get character matrix using same method as method beta
char_vector = torch.eye(len(CHARACTERS))[CHARACTERS.index(character)].to(device).unsqueeze(0)
out = net.char_vec_fc_1(char_vector)
out = net.char_vec_relu_1(out)
out, _ = net.char_lstm_1(out.unsqueeze(0))
out = out.squeeze(0)
out = net.char_vec_fc2_1(out)
char_matrix = out.view([-1, 256, 256])
inv_char_matrix = char_matrix.inverse()
id = split_ids[0][0]
W_c_vector = seg_W_c[0, id].squeeze()
# invert to get writer-independed DSD
W_vector = torch.bmm(inv_char_matrix, W_c_vector.repeat(inv_char_matrix.size(0), 1).unsqueeze(2))
all_W.append(W_vector)
all_C.append(char_matrix)
index += 1
if index == len(target_word):
break
if not available: # method alpha
character = target_word[index]
# print(f'no dic - {character}')
char_vector = torch.eye(len(CHARACTERS))[CHARACTERS.index(character)].to(device).unsqueeze(0)
out = net.char_vec_fc_1(char_vector)
out = net.char_vec_relu_1(out)
out, _ = net.char_lstm_1(out.unsqueeze(0))
out = out.squeeze(0)
out = net.char_vec_fc2_1(out)
char_matrix = out.view([-1, 256, 256])
W_vector = writer_mean_Ws[i].repeat(char_matrix.size(0), 1).unsqueeze(2)
# all_W.append([W_vector])
all_W.append(W_vector)
all_C.append(char_matrix)
index += 1
all_writer_Ws[i, :, :] = torch.stack(all_W).squeeze()
all_writer_Cs[i, :, :, :] = torch.stack(all_C).squeeze()
return all_writer_Ws, all_writer_Cs
def get_writer_blend_W_c(writer_weights, all_Ws, all_Cs):
"""
generates character-dependent style-dependent DSDs for each character/segement in target_word,
averaging together the styles of the handwritings using provided weights
n is the number of writers
M is the number of characters in the target word
L is the latent vector size (in this case 256)
input:
- writer_weights, a list of length n weights for each writer that sum to one
- all_writer_Ws, an n x M x L tensor representing each weiter's style vector for every character
- all_writer_Cs, an n x M x L x L tensor representing the style's correspodning character matrix
output:
- an M x 1 x L tensor of M scharacter-dependent style-dependent DSDs
"""
n, M, _ = all_Ws.shape
weights_tensor = torch.tensor(writer_weights).repeat_interleave(M * L).reshape(n, M, L) # repeat accross remaining dimensions
W_vectors = (weights_tensor * all_Ws).sum(axis=0).unsqueeze(-1) # take weighted sum accross writers axis
char_matrices = all_Cs[0, :, :, :] # character matrices are independent of writer
W_cs = torch.bmm(char_matrices, W_vectors)
return W_cs.reshape(M, 1, L)
def get_character_blend_W_c(character_weights, all_Ws, all_Cs):
"""
generates a single character-dependent style-dependent DSD,
averaging together the characters using provided weights
M is the number of characters to blend
L is the latent vector size (in this case 256)
input:
- character_weights, a list of length M weights for each character that sum to one
- all_Ws, a 1 x M x L tensor representing the wwiter's style vector for each character
- all_Cs, 1 x M x L x L tensor representing the style's correspodning character matrix
output:
- a 1 x 1 x L tensor representing the character-dependent style-dependent DSDs
"""
M = len(character_weights)
W_vector = all_Ws[0, 0, :].unsqueeze(-1)
weights_tensor = torch.tensor(character_weights).repeat_interleave(L * L).reshape(1, M, L, L) # repeat accross remaining dimensions
char_matrix = (weights_tensor * all_Cs).sum(axis=1).squeeze() # take weighted sum accross characters axis
W_c = char_matrix @ W_vector
return W_c.reshape(1, 1, L)
def get_commands(net, target_word, all_W_c): # seems like target_word is only used for length
"""converts character-dependent style-dependent DSDs to a list of commands for drawing"""
all_commands = []
current_id = 0
while True:
word_Wc_rec_TYPE_D = []
TYPE_D_REF = []
cid = 0
for segment_batch_id in range(len(all_W_c)):
if len(TYPE_D_REF) == 0:
for each_segment_Wc in all_W_c[segment_batch_id]:
if cid >= current_id:
word_Wc_rec_TYPE_D.append(each_segment_Wc)
cid += 1
if len(word_Wc_rec_TYPE_D) > 0:
TYPE_D_REF.append(all_W_c[segment_batch_id][-1])
else:
for each_segment_Wc in all_W_c[segment_batch_id]:
magic_inp = torch.cat([torch.stack(TYPE_D_REF, 0), each_segment_Wc.unsqueeze(0)], 0)
magic_inp = magic_inp.unsqueeze(0)
TYPE_D_out, (c, h) = net.magic_lstm(magic_inp)
TYPE_D_out = TYPE_D_out.squeeze(0)
word_Wc_rec_TYPE_D.append(TYPE_D_out[-1])
TYPE_D_REF.append(all_W_c[segment_batch_id][-1])
WC_ = torch.stack(word_Wc_rec_TYPE_D)
tmp_commands, res = net.sample_from_w_fix(WC_)
current_id += res
if len(all_commands) == 0:
all_commands.append(tmp_commands)
else:
all_commands.append(tmp_commands[1:])
if res < 0 or current_id >= len(target_word):
break
commands = []
px, py = 0, 100
for coms in all_commands:
for i, [dx, dy, t] in enumerate(coms):
x = px + dx * 5
y = py + dy * 5
commands.append([x, y, t])
px, py = x, y
commands = np.asarray(commands)
commands[:, 0] -= np.min(commands[:, 0])
return commands
def mdn_video(target_word, num_samples, scale_sd, clamp_mdn, net, all_loaded_data, device):
'''
Method creating gif of mdn samples
num_samples: number of samples to be inputted
max_scale: the maximum value used to scale SD while sampling (increment is based on num samples)
'''
words = target_word.split(' ')
us_target_word = re.sub(r"\s+", '_', target_word)
os.makedirs(f"./results/{us_target_word}_mdn_samples", exist_ok=True)
for i in range(num_samples):
net.scale_sd = scale_sd
net.clamp_mdn = clamp_mdn
mean_global_W = get_mean_global_W(net, all_loaded_data[0], device)
word_Ws = []
word_Cs = []
for word in words:
writer_Ws, writer_Cs = get_DSD(net, word, [mean_global_W], [all_loaded_data[0]], device)
word_Ws.append(writer_Ws)
word_Cs.append(writer_Cs)
im = draw_words(words, word_Ws, word_Cs, [1], net)
im.convert("RGB").save(f'results/{us_target_word}_mdn_samples/sample_{i}.png')
# Convert fromes to video using ffmpeg
photos = ffmpeg.input(f'results/{us_target_word}_mdn_samples/sample_*.png', pattern_type='glob', framerate=10)
videos = photos.output(f'results/{us_target_word}_video.mov', vcodec="libx264", pix_fmt="yuv420p")
videos.run(overwrite_output=True)
def sample_blended_writers(writer_weights, target_sentence, net, all_loaded_data, device="cpu"):
"""Generates an image of handwritten text based on target_sentence"""
words = target_sentence.split(' ')
writer_mean_Ws = []
for loaded_data in all_loaded_data:
mean_global_W = get_mean_global_W(net, loaded_data, device)
writer_mean_Ws.append(mean_global_W)
word_Ws = []
word_Cs = []
for word in words:
writer_Ws, writer_Cs = get_DSD(net, word, writer_mean_Ws, all_loaded_data, device)
word_Ws.append(writer_Ws)
word_Cs.append(writer_Cs)
return draw_words(words, word_Ws, word_Cs, writer_weights, net)
def sample_character_grid(letters, grid_size, net, all_loaded_data, device="cpu"):
"""Generates an image of handwritten text based on target_sentence"""
width = 60
im = Image.fromarray(np.zeros([(grid_size + 1) * width, (grid_size + 1) * width]))
dr = ImageDraw.Draw(im)
M = len(letters)
mean_global_W = get_mean_global_W(net, all_loaded_data[0], device)
# all_Ws = torch.zeros(1, M, L)
all_Cs = torch.zeros(1, M, L, L)
for i in range(M): # get corners of grid
W_vector, char_matrix = get_DSD(net, letters[i], [mean_global_W], [all_loaded_data[0]], device)
# all_Ws[:, i, :] = W_vector
all_Cs[:, i, :, :] = char_matrix
all_Ws = mean_global_W.reshape(1, 1, L)
for i in range(grid_size):
for j in range(grid_size):
wx = i / (grid_size - 1)
wy = j / (grid_size - 1)
character_weights = [(1 - wx) * (1 - wy), # top left is 1 at (0, 0)
wx * (1 - wy), # top right is 1 at (1, 0)
(1 - wx) * wy, # bottom left is 1 at (0, 1)
wx * wy] # bottom right is 1 at (1, 1)
all_W_c = get_character_blend_W_c(character_weights, all_Ws, all_Cs)
all_commands = get_commands(net, letters[0], all_W_c)
offset_x = i * width
offset_y = j * width
for [x, y, t] in all_commands:
if t == 0:
dr.line((
px + offset_x + width/2,
py + offset_y - width/2, # letters are shifted down for some reason
x + offset_x + width/2,
y + offset_y - width/2), 255, 1)
px, py = x, y
return im
def writer_interpolation_video(target_sentence, transition_time, net, all_loaded_data, device="cpu"):
"""
Generates a video of interpolating between each provided writer
"""
n = len(all_loaded_data)
os.makedirs(f"./results/{target_sentence}_blend_frames", exist_ok=True)
words = target_sentence.split(' ')
writer_mean_Ws = []
for loaded_data in all_loaded_data:
mean_global_W = get_mean_global_W(net, loaded_data, device)
writer_mean_Ws.append(mean_global_W)
word_Ws = []
word_Cs = []
for word in words:
all_writer_Ws, all_writer_Cs = get_DSD(net, word, writer_mean_Ws, all_loaded_data, device)
word_Ws.append(all_writer_Ws)
word_Cs.append(all_writer_Cs)
for i in range(n - 1):
for j in range(transition_time):
completion = j/(transition_time)
individual_weights = [1 - completion, completion]
writer_weights = [0] * i + individual_weights + [0] * (n - 2 - i)
im = draw_words(words, word_Ws, word_Cs, writer_weights, net)
im.convert("RGB").save(f"./results/{target_sentence}_blend_frames/frame_{str(i * transition_time + j).zfill(3)}.png")
# Convert fromes to video using ffmpeg
photos = ffmpeg.input(f"./results/{target_sentence}_blend_frames/frame_*.png", pattern_type='glob', framerate=10)
videos = photos.output(f"results/{target_sentence}_blend_video.mov", vcodec="libx264", pix_fmt="yuv420p")
videos.run(overwrite_output=True)
def mdn_single_sample(target_word, scale_sd, clamp_mdn, net, all_loaded_data, device):
'''
Method creating gif of mdn samples
num_samples: number of samples to be inputted
max_scale: the maximum value used to scale SD while sampling (increment is based on num samples)
'''
words = target_word.split(' ')
net.scale_sd = scale_sd
net.clamp_mdn = clamp_mdn
mean_global_W = get_mean_global_W(net, all_loaded_data[0], device)
word_Ws = []
word_Cs = []
for word in words:
writer_Ws, writer_Cs = get_DSD(net, word, [mean_global_W], [all_loaded_data[0]], device)
word_Ws.append(writer_Ws)
word_Cs.append(writer_Cs)
return draw_words(words, word_Ws, word_Cs, [1], net)
def sample_blended_chars(character_weights, letters, net, all_loaded_data, device="cpu"):
"""Generates an image of handwritten text based on target_sentence"""
M = len(letters)
mean_global_W = get_mean_global_W(net, all_loaded_data[0], device)
all_Cs = torch.zeros(1, M, L, L)
for i in range(M): # get corners of grid
W_vector, char_matrix = get_DSD(net, letters[i], [mean_global_W], [all_loaded_data[0]], device)
all_Cs[:, i, :, :] = char_matrix
all_Ws = mean_global_W.reshape(1, 1, L)
all_W_c = get_character_blend_W_c(character_weights, all_Ws, all_Cs)
all_commands = get_commands(net, letters[0], all_W_c)
im = commands_to_image(all_commands, 100, 100, 30, 30)
return im
def char_interpolation_video(letters, transition_time, net, all_loaded_data, device="cpu"):
"""Generates an image of handwritten text based on target_sentence"""
os.makedirs(f"./results/{''.join(letters)}_frames", exist_ok=True) # make a folder for the frames
M = len(letters)
mean_global_W = get_mean_global_W(net, all_loaded_data[0], device)
all_Cs = torch.zeros(1, M, L, L)
for i in range(M): # get corners of grid
W_vector, char_matrix = get_DSD(net, letters[i], [mean_global_W], [all_loaded_data[0]], device)
all_Cs[:, i, :, :] = char_matrix
all_Ws = mean_global_W.reshape(1, 1, L)
for i in range(M - 1):
for j in range(transition_time):
completion = j / (transition_time - 1)
individual_weights = [1 - completion, completion]
character_weights = [0] * i + individual_weights + [0] * (M - 2 - i)
all_W_c = get_character_blend_W_c(character_weights, all_Ws, all_Cs)
all_commands = get_commands(net, letters[i], all_W_c)
im = commands_to_image(all_commands, 100, 100, 25, 25)
im.convert("RGB").save(f"results/{''.join(letters)}_frames/frames_{str(i * transition_time + j).zfill(3)}.png")
# Convert fromes to video using ffmpeg
photos = ffmpeg.input(f"results/{''.join(letters)}_frames/frames_*.png", pattern_type='glob', framerate=24)
videos = photos.output(f"results/{''.join(letters)}_video.mov", vcodec="libx264", pix_fmt="yuv420p")
videos.run(overwrite_output=True)
def draw_words(words, word_Ws, word_Cs, writer_weights, net):
im = Image.fromarray(np.zeros([160, 750]))
dr = ImageDraw.Draw(im)
width = 50
for word, all_writer_Ws, all_writer_Cs in zip(words, word_Ws, word_Cs):
all_W_c = get_writer_blend_W_c(writer_weights, all_writer_Ws, all_writer_Cs)
all_commands = get_commands(net, word, all_W_c)
for [x, y, t] in all_commands:
if t == 0:
dr.line((px+width, py, x+width, y), 255, 1)
px, py = x, y
width += np.max(all_commands[:, 0]) + 25
return im
def commands_to_image(commands, imW, imH, xoff, yoff):
im = Image.fromarray(np.zeros([imW, imH]))
dr = ImageDraw.Draw(im)
for [x, y, t] in commands:
if t == 0:
dr.line((
px + xoff,
py - yoff, # letters are shifted down for some reason
x + xoff,
y - yoff), 255, 1)
px, py = x, y
return im
|