File size: 22,364 Bytes
b65c5e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d3e7ab
 
b65c5e3
 
3d3e7ab
 
 
 
b65c5e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d3e7ab
 
b65c5e3
3d3e7ab
 
 
 
 
b65c5e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d3e7ab
b65c5e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d3e7ab
 
b65c5e3
 
3d3e7ab
 
b65c5e3
3d3e7ab
b65c5e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c37eb2
b65c5e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d3e7ab
b65c5e3
9c37eb2
b65c5e3
 
 
 
 
 
 
 
3d3e7ab
 
 
 
 
 
 
 
 
 
 
 
 
 
9c37eb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522

import os
import re
from random import random
import torch
import pickle
import argparse
import numpy as np
from helper import *
from PIL import Image
import torch.nn as nn
import torch.optim as optim
from config.GlobalVariables import *
from tensorboardX import SummaryWriter
from SynthesisNetwork import SynthesisNetwork
from DataLoader import DataLoader
# import ffmpeg # for problems with ffmpeg uninstall ffmpeg and then install ffmpeg-python

L = 256

def get_mean_global_W(net, loaded_data, device):
    """gets the mean global style vector for a given writer"""
    [_, _, _, _, _, _, all_word_level_stroke_in, all_word_level_stroke_out, all_word_level_stroke_length, all_word_level_term, all_word_level_char, all_word_level_char_length, all_segment_level_stroke_in, all_segment_level_stroke_out,
        all_segment_level_stroke_length, all_segment_level_term, all_segment_level_char, all_segment_level_char_length] = loaded_data

    batch_word_level_stroke_in = [torch.FloatTensor(a).to(device) for a in all_word_level_stroke_in]
    batch_word_level_stroke_out = [torch.FloatTensor(a).to(device) for a in all_word_level_stroke_out]
    batch_word_level_stroke_length = [torch.LongTensor(a).to(device).unsqueeze(-1) for a in all_word_level_stroke_length]
    batch_word_level_term = [torch.FloatTensor(a).to(device) for a in all_word_level_term]
    batch_word_level_char = [torch.LongTensor(a).to(device) for a in all_word_level_char]
    batch_word_level_char_length = [torch.LongTensor(a).to(device).unsqueeze(-1) for a in all_word_level_char_length]
    batch_segment_level_stroke_in = [[torch.FloatTensor(a).to(device) for a in b] for b in all_segment_level_stroke_in]
    batch_segment_level_stroke_out = [[torch.FloatTensor(a).to(device) for a in b] for b in all_segment_level_stroke_out]
    batch_segment_level_stroke_length = [[torch.LongTensor(a).to(device).unsqueeze(-1) for a in b] for b in all_segment_level_stroke_length]
    batch_segment_level_term = [[torch.FloatTensor(a).to(device) for a in b] for b in all_segment_level_term]
    batch_segment_level_char = [[torch.LongTensor(a).to(device) for a in b] for b in all_segment_level_char]
    batch_segment_level_char_length = [[torch.LongTensor(a).to(device).unsqueeze(-1) for a in b] for b in all_segment_level_char_length]

    with torch.no_grad():
        word_inf_state_out = net.inf_state_fc1(batch_word_level_stroke_out[0])
        word_inf_state_out = net.inf_state_relu(word_inf_state_out)
        word_inf_state_out, _ = net.inf_state_lstm(word_inf_state_out)

        user_word_level_char = batch_word_level_char[0]
        user_word_level_term = batch_word_level_term[0]

        original_Wc = []
        word_batch_id = 0

        curr_seq_len = batch_word_level_stroke_length[0][word_batch_id][0]
        curr_char_len = batch_word_level_char_length[0][word_batch_id][0]

        char_vector = torch.eye(len(CHARACTERS))[user_word_level_char[word_batch_id][:curr_char_len]].to(device)
        current_term = user_word_level_term[word_batch_id][:curr_seq_len].unsqueeze(-1)
        split_ids = torch.nonzero(current_term)[:, 0]

        char_vector_1 = net.char_vec_fc_1(char_vector)
        char_vector_1 = net.char_vec_relu_1(char_vector_1)

        char_out_1 = char_vector_1.unsqueeze(0)
        char_out_1, (c, h) = net.char_lstm_1(char_out_1)
        char_out_1 = char_out_1.squeeze(0)
        char_out_1 = net.char_vec_fc2_1(char_out_1)
        char_matrix_1 = char_out_1.view([-1, 1, 256, 256])
        char_matrix_1 = char_matrix_1.squeeze(1)
        char_matrix_inv_1 = torch.inverse(char_matrix_1)

        W_c_t = word_inf_state_out[word_batch_id][:curr_seq_len]
        W_c = torch.stack([W_c_t[i] for i in split_ids])
        original_Wc.append(W_c)

        W = torch.bmm(char_matrix_inv_1, W_c.unsqueeze(2)).squeeze(-1)
        mean_global_W = torch.mean(W, 0)
        return mean_global_W


def get_DSD(net, target_word, writer_mean_Ws, all_loaded_data, device):
    """
    returns a style vector and character matrix for each character/segment in target_word

    n is the number of writers
    M is the number of characters in the target word
    L is the latent vector size (in this case 256)

    input:
    - target_word, a string of length M to be converted to a DSD
    - writer_mean_Ws, a list of n style vectors of size L

    output:
    - all_writer_Ws, a tensor of size n x M x L representing the style vectors for each writer and character 
    - all_writer_Cs, a tensor of size n x M x L x L representing the corresponding character matrix
    """

    n = len(all_loaded_data)
    M = len(target_word)
    all_writer_Ws = torch.zeros(n, M, L)
    all_writer_Cs = torch.zeros(n, M, L, L)

    for i in range(n):
        np.random.seed(0)

        [_, _, _, _, _, _, all_word_level_stroke_in, all_word_level_stroke_out, all_word_level_stroke_length, all_word_level_term, all_word_level_char, all_word_level_char_length, all_segment_level_stroke_in, all_segment_level_stroke_out,
            all_segment_level_stroke_length, all_segment_level_term, all_segment_level_char, all_segment_level_char_length] = all_loaded_data[i]

        available_segments = {}
        for sid, sentence in enumerate(all_segment_level_char[0]):
            for wid, word in enumerate(sentence):
                segment = ''.join([CHARACTERS[i] for i in word])
                split_ids = np.asarray(np.nonzero(all_segment_level_term[0][sid][wid]))

                if segment in available_segments:
                    available_segments[segment].append([all_segment_level_stroke_out[0][sid][wid][:all_segment_level_stroke_length[0][sid][wid]], split_ids])
                else:
                    available_segments[segment] = [[all_segment_level_stroke_out[0][sid][wid][:all_segment_level_stroke_length[0][sid][wid]], split_ids]]

        index = 0
        all_W = []
        all_C = []

        # while index <= len(target_word):
        while index < len(target_word):
            available = False
            # Currently this just uses each character individually instead of the whole segment
            # for end_index in range(len(target_word), index, -1):
            #     segment = target_word[index:end_index]
            # print (segment)
            segment = target_word[index]
            if segment in available_segments:  # method beta
                # print(f'in dic - {segment}')
                available = True
                candidates = available_segments[segment]
                segment_level_stroke_out, split_ids = candidates[np.random.randint(len(candidates))]
                out = net.inf_state_fc1(torch.FloatTensor(segment_level_stroke_out).to(device).unsqueeze(0))
                out = net.inf_state_relu(out)
                seg_W_c, (h_n, _) = net.inf_state_lstm(out)

                character = segment[0]  # take the first character of the segment?

                # get character matrix using same method as method beta
                char_vector = torch.eye(len(CHARACTERS))[CHARACTERS.index(character)].to(device).unsqueeze(0)
                out = net.char_vec_fc_1(char_vector)
                out = net.char_vec_relu_1(out)
                out, _ = net.char_lstm_1(out.unsqueeze(0))
                out = out.squeeze(0)
                out = net.char_vec_fc2_1(out)
                char_matrix = out.view([-1, 256, 256])
                inv_char_matrix = char_matrix.inverse()

                id = split_ids[0][0]
                W_c_vector = seg_W_c[0, id].squeeze()

                # invert to get writer-independed DSD
                W_vector = torch.bmm(inv_char_matrix, W_c_vector.repeat(inv_char_matrix.size(0), 1).unsqueeze(2))
                all_W.append(W_vector)
                all_C.append(char_matrix)

                index += 1

            if index == len(target_word):
                break

            if not available:  # method alpha
                character = target_word[index]
                # print(f'no dic - {character}')
                char_vector = torch.eye(len(CHARACTERS))[CHARACTERS.index(character)].to(device).unsqueeze(0)
                out = net.char_vec_fc_1(char_vector)
                out = net.char_vec_relu_1(out)
                out, _ = net.char_lstm_1(out.unsqueeze(0))
                out = out.squeeze(0)
                out = net.char_vec_fc2_1(out)
                char_matrix = out.view([-1, 256, 256])

                W_vector = writer_mean_Ws[i].repeat(char_matrix.size(0), 1).unsqueeze(2)

                # all_W.append([W_vector])
                all_W.append(W_vector)
                all_C.append(char_matrix)

                index += 1

        all_writer_Ws[i, :, :] = torch.stack(all_W).squeeze()
        all_writer_Cs[i, :, :, :] = torch.stack(all_C).squeeze()

    return all_writer_Ws, all_writer_Cs


def get_writer_blend_W_c(writer_weights, all_Ws, all_Cs):
    """
    generates character-dependent style-dependent DSDs for each character/segement in target_word,
    averaging together the styles of the handwritings using provided weights

    n is the number of writers
    M is the number of characters in the target word
    L is the latent vector size (in this case 256)

    input:
    - writer_weights, a list of length n weights for each writer that sum to one
    - all_writer_Ws, an n x M x L tensor representing each weiter's style vector for every character
    - all_writer_Cs, an n x M x L x L tensor representing the style's correspodning character matrix

    output:
    - an M x 1 x L tensor of M scharacter-dependent style-dependent DSDs
    """
    n, M, _ = all_Ws.shape
    weights_tensor = torch.tensor(writer_weights).repeat_interleave(M * L).reshape(n, M, L)  # repeat accross remaining dimensions
    W_vectors = (weights_tensor * all_Ws).sum(axis=0).unsqueeze(-1)  # take weighted sum accross writers axis
    char_matrices = all_Cs[0, :, :, :]  # character matrices are independent of writer

    W_cs = torch.bmm(char_matrices, W_vectors)

    return W_cs.reshape(M, 1, L)


def get_character_blend_W_c(character_weights, all_Ws, all_Cs):
    """
    generates a single character-dependent style-dependent DSD,
    averaging together the characters using provided weights

    M is the number of characters to blend
    L is the latent vector size (in this case 256)

    input:
    - character_weights, a list of length M weights for each character that sum to one
    - all_Ws, a 1 x M x L tensor representing the wwiter's style vector for each character
    - all_Cs, 1 x M x L x L tensor representing the style's correspodning character matrix

    output:
    - a 1 x 1 x L tensor representing the character-dependent style-dependent DSDs
    """
    M = len(character_weights)
    W_vector = all_Ws[0, 0, :].unsqueeze(-1)

    weights_tensor = torch.tensor(character_weights).repeat_interleave(L * L).reshape(1, M, L, L)  # repeat accross remaining dimensions
    char_matrix = (weights_tensor * all_Cs).sum(axis=1).squeeze() # take weighted sum accross characters axis

    W_c = char_matrix @ W_vector

    return W_c.reshape(1, 1, L)


def get_commands(net, target_word, all_W_c): # seems like target_word is only used for length
    """converts character-dependent style-dependent DSDs to a list of commands for drawing"""
    all_commands = []
    current_id = 0
    while True:
        word_Wc_rec_TYPE_D = []
        TYPE_D_REF = []
        cid = 0
        for segment_batch_id in range(len(all_W_c)):
            if len(TYPE_D_REF) == 0:
                for each_segment_Wc in all_W_c[segment_batch_id]:
                    if cid >= current_id:
                        word_Wc_rec_TYPE_D.append(each_segment_Wc)
                    cid += 1
                if len(word_Wc_rec_TYPE_D) > 0:
                    TYPE_D_REF.append(all_W_c[segment_batch_id][-1])
            else:
                for each_segment_Wc in all_W_c[segment_batch_id]:
                    magic_inp = torch.cat([torch.stack(TYPE_D_REF, 0), each_segment_Wc.unsqueeze(0)], 0)
                    magic_inp = magic_inp.unsqueeze(0)
                    TYPE_D_out, (c, h) = net.magic_lstm(magic_inp)
                    TYPE_D_out = TYPE_D_out.squeeze(0)
                    word_Wc_rec_TYPE_D.append(TYPE_D_out[-1])
                TYPE_D_REF.append(all_W_c[segment_batch_id][-1])
        WC_ = torch.stack(word_Wc_rec_TYPE_D)
        tmp_commands, res = net.sample_from_w_fix(WC_)
        current_id += res
        if len(all_commands) == 0:
            all_commands.append(tmp_commands)
        else:
            all_commands.append(tmp_commands[1:])
        if res < 0 or current_id >= len(target_word):
            break

    commands = []
    px, py = 0, 100
    for coms in all_commands:
        for i, [dx, dy, t] in enumerate(coms):
            x = px + dx * 5
            y = py + dy * 5
            commands.append([x, y, t])
            px, py = x, y
    commands = np.asarray(commands)
    commands[:, 0] -= np.min(commands[:, 0])

    return commands

def mdn_video(target_word, num_samples, scale_sd, clamp_mdn, net, all_loaded_data, device):
    '''
    Method creating gif of mdn samples
    num_samples: number of samples to be inputted
    max_scale: the maximum value used to scale SD while sampling (increment is based on num samples)
    '''
    words = target_word.split(' ')
    us_target_word = re.sub(r"\s+", '_', target_word)
    os.makedirs(f"./results/{us_target_word}_mdn_samples", exist_ok=True)
    for i in range(num_samples):
        net.scale_sd = scale_sd
        net.clamp_mdn = clamp_mdn

        mean_global_W = get_mean_global_W(net, all_loaded_data[0], device)

        word_Ws = []
        word_Cs = []
        for word in words:
            writer_Ws, writer_Cs = get_DSD(net, word, [mean_global_W], [all_loaded_data[0]], device)
            word_Ws.append(writer_Ws)
            word_Cs.append(writer_Cs)
            
        im = draw_words(words, word_Ws, word_Cs, [1], net)
        im.convert("RGB").save(f'results/{us_target_word}_mdn_samples/sample_{i}.png')
    # Convert fromes to video using ffmpeg
    photos = ffmpeg.input(f'results/{us_target_word}_mdn_samples/sample_*.png', pattern_type='glob', framerate=10)
    videos = photos.output(f'results/{us_target_word}_video.mov', vcodec="libx264", pix_fmt="yuv420p")
    videos.run(overwrite_output=True)

def sample_blended_writers(writer_weights, target_sentence, net, all_loaded_data, device="cpu"):
    """Generates an image of handwritten text based on target_sentence"""
    words = target_sentence.split(' ')

    writer_mean_Ws = []
    for loaded_data in all_loaded_data:
        mean_global_W = get_mean_global_W(net, loaded_data, device)
        writer_mean_Ws.append(mean_global_W)

    word_Ws = []
    word_Cs = []
    for word in words:
        writer_Ws, writer_Cs = get_DSD(net, word, writer_mean_Ws, all_loaded_data, device)
        word_Ws.append(writer_Ws)
        word_Cs.append(writer_Cs)
        
    return draw_words(words, word_Ws, word_Cs, writer_weights, net)


def sample_character_grid(letters, grid_size, net, all_loaded_data, device="cpu"):
    """Generates an image of handwritten text based on target_sentence"""
    width = 60
    im = Image.fromarray(np.zeros([(grid_size + 1) * width, (grid_size + 1) * width]))
    dr = ImageDraw.Draw(im)

    M = len(letters)
    mean_global_W = get_mean_global_W(net, all_loaded_data[0], device)

    # all_Ws = torch.zeros(1, M, L)
    all_Cs = torch.zeros(1, M, L, L)
    for i in range(M):  # get corners of grid
        W_vector, char_matrix = get_DSD(net, letters[i], [mean_global_W], [all_loaded_data[0]], device)
        # all_Ws[:, i, :] = W_vector
        all_Cs[:, i, :, :] = char_matrix

    all_Ws = mean_global_W.reshape(1, 1, L)

    for i in range(grid_size):
        for j in range(grid_size):
            wx = i / (grid_size - 1)
            wy = j / (grid_size - 1)

            character_weights = [(1 - wx) * (1 - wy), # top left is 1 at (0, 0)
                                 wx       * (1 - wy), # top right is 1  at (1, 0)
                                 (1 - wx) * wy,       # bottom left is 1 at (0, 1)
                                 wx       * wy]       # bottom right is 1 at (1, 1)
            all_W_c = get_character_blend_W_c(character_weights, all_Ws, all_Cs)
            all_commands = get_commands(net, letters[0], all_W_c)

            offset_x = i * width
            offset_y = j * width

            for [x, y, t] in all_commands:
                if t == 0:
                    dr.line((
                        px + offset_x + width/2,
                        py + offset_y - width/2,  # letters are shifted down for some reason
                        x + offset_x + width/2,
                        y + offset_y - width/2), 255, 1)
                px, py = x, y

    return im

def writer_interpolation_video(target_sentence, transition_time, net, all_loaded_data, device="cpu"):
    """
    Generates a video of interpolating between each provided writer
    """

    n = len(all_loaded_data)

    os.makedirs(f"./results/{target_sentence}_blend_frames", exist_ok=True)

    words = target_sentence.split(' ')

    writer_mean_Ws = []
    for loaded_data in all_loaded_data:
        mean_global_W = get_mean_global_W(net, loaded_data, device)
        writer_mean_Ws.append(mean_global_W)

    word_Ws = []
    word_Cs = []

    for word in words:
        all_writer_Ws, all_writer_Cs = get_DSD(net, word, writer_mean_Ws, all_loaded_data, device)
        word_Ws.append(all_writer_Ws)
        word_Cs.append(all_writer_Cs)

    for i in range(n - 1):
        for j in range(transition_time):
            completion = j/(transition_time)

            individual_weights = [1 - completion, completion]
            writer_weights = [0] * i + individual_weights + [0] * (n - 2 - i)

            im = draw_words(words, word_Ws, word_Cs, writer_weights, net)
            im.convert("RGB").save(f"./results/{target_sentence}_blend_frames/frame_{str(i * transition_time + j).zfill(3)}.png")

    # Convert fromes to video using ffmpeg
    photos = ffmpeg.input(f"./results/{target_sentence}_blend_frames/frame_*.png", pattern_type='glob', framerate=10)
    videos = photos.output(f"results/{target_sentence}_blend_video.mov", vcodec="libx264", pix_fmt="yuv420p")
    videos.run(overwrite_output=True)

def mdn_single_sample(target_word, scale_sd, clamp_mdn, net, all_loaded_data, device):
    '''
    Method creating gif of mdn samples
    num_samples: number of samples to be inputted
    max_scale: the maximum value used to scale SD while sampling (increment is based on num samples)
    '''
    words = target_word.split(' ')

    net.scale_sd = scale_sd
    net.clamp_mdn = clamp_mdn

    mean_global_W = get_mean_global_W(net, all_loaded_data[0], device)

    word_Ws = []
    word_Cs = []
    for word in words:
        writer_Ws, writer_Cs = get_DSD(net, word, [mean_global_W], [all_loaded_data[0]], device)
        word_Ws.append(writer_Ws)
        word_Cs.append(writer_Cs)

    return draw_words(words, word_Ws, word_Cs, [1], net)


def sample_blended_chars(character_weights, letters, net, all_loaded_data, device="cpu"):
    """Generates an image of handwritten text based on target_sentence"""

    M = len(letters)
    mean_global_W = get_mean_global_W(net, all_loaded_data[0], device)

    all_Cs = torch.zeros(1, M, L, L)
    for i in range(M):  # get corners of grid
        W_vector, char_matrix = get_DSD(net, letters[i], [mean_global_W], [all_loaded_data[0]], device)
        all_Cs[:, i, :, :] = char_matrix

    all_Ws = mean_global_W.reshape(1, 1, L)

    all_W_c = get_character_blend_W_c(character_weights, all_Ws, all_Cs)
    all_commands = get_commands(net, letters[0], all_W_c)

    im = commands_to_image(all_commands, 100, 100, 30, 30)
    return im


def char_interpolation_video(letters, transition_time, net, all_loaded_data, device="cpu"):
    """Generates an image of handwritten text based on target_sentence"""

    os.makedirs(f"./results/{''.join(letters)}_frames", exist_ok=True) # make a folder for the frames

    M = len(letters)
    mean_global_W = get_mean_global_W(net, all_loaded_data[0], device)

    all_Cs = torch.zeros(1, M, L, L)
    for i in range(M):  # get corners of grid
        W_vector, char_matrix = get_DSD(net, letters[i], [mean_global_W], [all_loaded_data[0]], device)
        all_Cs[:, i, :, :] = char_matrix

    all_Ws = mean_global_W.reshape(1, 1, L)

    for i in range(M - 1):
        for j in range(transition_time):
            completion = j / (transition_time - 1)
            individual_weights = [1 - completion, completion]
            character_weights = [0] * i + individual_weights + [0] * (M - 2 - i)
            all_W_c = get_character_blend_W_c(character_weights, all_Ws, all_Cs)
            all_commands = get_commands(net, letters[i], all_W_c)

            im = commands_to_image(all_commands, 100, 100, 25, 25)
            im.convert("RGB").save(f"results/{''.join(letters)}_frames/frames_{str(i * transition_time + j).zfill(3)}.png")

    # Convert fromes to video using ffmpeg
    photos = ffmpeg.input(f"results/{''.join(letters)}_frames/frames_*.png", pattern_type='glob', framerate=24)
    videos = photos.output(f"results/{''.join(letters)}_video.mov", vcodec="libx264", pix_fmt="yuv420p")
    videos.run(overwrite_output=True)


def draw_words(words, word_Ws, word_Cs, writer_weights, net):
    im = Image.fromarray(np.zeros([160, 750]))
    dr = ImageDraw.Draw(im)
    width = 50
    for word, all_writer_Ws, all_writer_Cs in zip(words, word_Ws, word_Cs):
        all_W_c = get_writer_blend_W_c(writer_weights, all_writer_Ws, all_writer_Cs)
        all_commands = get_commands(net, word, all_W_c)

        for [x, y, t] in all_commands:
            if t == 0:
                dr.line((px+width, py, x+width, y), 255, 1)
            px, py = x, y
        width += np.max(all_commands[:, 0]) + 25

    return im

def commands_to_image(commands, imW, imH, xoff, yoff):
    im = Image.fromarray(np.zeros([imW, imH]))
    dr = ImageDraw.Draw(im)
    for [x, y, t] in commands:
        if t == 0:
            dr.line((
                px + xoff,
                py - yoff,  # letters are shifted down for some reason
                x + xoff,
                y - yoff), 255, 1)
        px, py = x, y
    return im