File size: 11,382 Bytes
b65c5e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
from config.GlobalVariables import *
import math
import torch
from scipy import stats
import numpy as np
from PIL import Image, ImageDraw
import os
import pickle

def preprocess_dataset(data_dir, resample=20, pred_start=1):
    def reformat_raw_data(raw_data, pred_start):
        if pred_start == 1:
            tmp = np.concatenate([[[0, 500, 0]], raw_data], 0)
            tmp = tmp[1:] - tmp[:-1]
            tmp[1:, 2] = raw_data[:-1, 2]
            tmp = np.concatenate([[[0, 0, 0]], tmp], 0)
        else:
            tmp = np.concatenate([raw_data[0:1], raw_data])
            tmp = tmp[1:] - tmp[:-1]
            tmp[0,2] = 0
            tmp[1:,2] = raw_data[:-1, 2]
        return tmp[:-1], tmp[1:]

    prohibits = [f'./BRUSH/5/118_resample{resample}', f'./BRUSH/7/14_resample{resample}',
                 f'./BRUSH/7/101_resample{resample}', f'./BRUSH/7/58_resample{resample}',
                 f'./BRUSH/14/20_resample{resample}', f'./BRUSH/22/45_resample{resample}',
                 f'./BRUSH/30/45_resample{resample}', f'./BRUSH/40/85_resample{resample}',
                 f'./BRUSH/50/45_resample{resample}', f'./BRUSH/59/29_resample{resample}',
                 f'./BRUSH/96/120_resample{resample}', f'./BRUSH/99/134_resample{resample}',
                 f'./BRUSH/140/35_resample{resample}', f'./BRUSH/144/55_resample{resample}',
                 f'./BRUSH/144/91_resample{resample}', f'./BRUSH/144/28_resample{resample}',
                 f'./BRUSH/144/69_resample{resample}']

    preprocess_dir = 'preprocess' if pred_start == 1 else 'preprocess2'

    for writer_id in range(170):
        print(f'Preprocessing the BRUSH dataset - Finished Writer ID: {writer_id + 1} / 170')
        for sentence_id in [i for i in os.listdir(f'{data_dir}/{writer_id}') if i[-3:] == f'e{resample}']:
            with open(f'{data_dir}/{writer_id}/{sentence_id}', 'rb') as f:
                [sentence_text, raw_points, character_labels] = pickle.load(f)
            if f'{data_dir}/{writer_id}/{sentence_id}' not in prohibits:
                sentence_raw_points = raw_points
                sentence_raw_points[:, 0] -= sentence_raw_points[0, 0]
                sentence_stroke_in, sentence_stroke_out = reformat_raw_data(sentence_raw_points, pred_start=pred_start)

                split_char_ids = [i for i, c in enumerate(sentence_text) if c == ' ']

                sentence_char = [CHARACTERS.find(c) for c in sentence_text]

                sentence_term = []
                cid = 0
                for i in range(len(character_labels) - 1):
                    if character_labels[i + 1, cid] != 1:
                        if np.argmax(character_labels[i + 1]) >= cid:
                            cid += 1
                            sentence_term.append(1)
                        else:
                            sentence_term.append(0)
                    else:
                        sentence_term.append(0)
                sentence_term.append(1)
                sentence_term = np.asarray(sentence_term)

                assert (len(sentence_term) == len(character_labels))

                word_level_raw_stroke = []
                word_level_stroke_in = []
                word_level_stroke_out = []
                word_level_char = []
                word_level_term = []

                segment_level_raw_stroke = []
                segment_level_stroke_in = []
                segment_level_stroke_out = []
                segment_level_char = []
                segment_level_term = []

                character_level_raw_stroke = []
                character_level_stroke_in = []
                character_level_stroke_out = []
                character_level_char = []
                character_level_term = []

                word_start_id = 0

                for i, c in enumerate(sentence_text):
                    if c != ' ':
                        character_raw_points = raw_points[character_labels[:, i] > 0]
                        character_raw_points[:, 0] -= character_raw_points[0, 0]
                        character_level_raw_stroke.append(character_raw_points)
                        character_stroke_in, character_stroke_out = reformat_raw_data(character_raw_points, pred_start=pred_start)
                        character_level_stroke_in.append(character_stroke_in)
                        character_level_stroke_out.append(character_stroke_out)
                        term = np.zeros([len(character_raw_points)])
                        term[-1] = 1
                        character_level_term.append(term)
                        character_level_char.append([CHARACTERS.find(c)])

                    if i in split_char_ids:
                        word = sentence_text[word_start_id:i]
                        word_labels = np.zeros(len(character_labels))
                        for j in range(word_start_id, i):
                            word_labels += character_labels[:, j]
                        word_raw_points = raw_points[word_labels > 0]
                        word_term = sentence_term[word_labels > 0]
                        word_term[0] = 0
                        assert (np.sum(word_term) == len(word))
                        word_raw_points[:, 0] -= word_raw_points[0, 0]
                        word_level_raw_stroke.append(word_raw_points)
                        word_stroke_in, word_stroke_out = reformat_raw_data(word_raw_points, pred_start=pred_start)
                        word_level_stroke_in.append(word_stroke_in)
                        word_level_stroke_out.append(word_stroke_out)
                        word_level_term.append(word_term)
                        word_level_char.append([CHARACTERS.find(c) for c in word])
                        word_start_id = i + 1

                        assert (len(character_level_raw_stroke) == len(word))

                        segment_level_raw_stroke.append(character_level_raw_stroke)
                        segment_level_stroke_in.append(character_level_stroke_in)
                        segment_level_stroke_out.append(character_level_stroke_out)
                        segment_level_char.append(character_level_char)
                        segment_level_term.append(character_level_term)
                        character_level_raw_stroke = []
                        character_level_stroke_in = []
                        character_level_stroke_out = []
                        character_level_char = []
                        character_level_term = []

                word = sentence_text[word_start_id:]
                word_labels = np.zeros(len(character_labels))
                for j in range(word_start_id, len(sentence_text)):
                    word_labels += character_labels[:, j]
                word_raw_points = raw_points[word_labels > 0]
                word_raw_points[:, 0] -= word_raw_points[0, 0]
                word_term = sentence_term[word_labels > 0]
                word_term[0] = 0
                assert (np.sum(word_term) == len(word))
                word_level_raw_stroke.append(word_raw_points)
                word_stroke_in, word_stroke_out = reformat_raw_data(word_raw_points, pred_start=pred_start)
                word_level_stroke_in.append(word_stroke_in)
                word_level_stroke_out.append(word_stroke_out)
                word_level_term.append(word_term)
                word_level_char.append([CHARACTERS.find(c) for c in word])
                assert (len(character_level_raw_stroke) == len(word))
                segment_level_raw_stroke.append(character_level_raw_stroke)
                segment_level_stroke_in.append(character_level_stroke_in)
                segment_level_stroke_out.append(character_level_stroke_out)
                segment_level_char.append(character_level_char)
                segment_level_term.append(character_level_term)

                if not os.path.exists(f'{data_dir}/{preprocess_dir}/{writer_id}'):
                    os.mkdir(f'{data_dir}/{preprocess_dir}/{writer_id}')

                with open(f'{data_dir}/{preprocess_dir}/{writer_id}/{sentence_id}', 'wb') as f:
                    pickle.dump([
                        sentence_stroke_in, sentence_stroke_out, sentence_term, sentence_char,
                        word_level_stroke_in, word_level_stroke_out, word_level_term, word_level_char,
                        segment_level_stroke_in, segment_level_stroke_out, segment_level_term, segment_level_char], f)


def gaussian_2d(x1, x2, mu1, mu2, s1, s2, rho):
    norm1 = x1 - mu1
    norm2 = x2 - mu2
    s1s2 = s1 * s2
    z = (norm1 / s1) ** 2 + (norm2 / s2) ** 2 - 2 * rho * norm1 * norm2 / s1s2
    numerator = torch.exp(-z / (2 * (1 - rho ** 2)))
    denominator = 2 * math.pi * s1s2 * torch.sqrt(1 - rho ** 2)
    gaussian = numerator / denominator
    return gaussian


def get_minimax(stroke_results):
    minimas = []
    maximas = []
    for stroke in stroke_results:
        for i, [x, y] in enumerate(stroke):
            if i == 0:
                prev_x, prev_y = x, y
            if i == len(stroke) - 1:
                if prev_y <= y:
                    maximas.append([x, y])
                if prev_y >= y:
                    minimas.append([x, y])
                break
            else:
                next_x, next_y = stroke[i + 1]
                if prev_y <= y and y >= next_y:
                    maximas.append([x, y])
                if prev_y >= y and y <= next_y:
                    minimas.append([x, y])

    minimas = np.asarray(minimas)
    maximas = np.asarray(maximas)
    return minimas, maximas


def get_slope(minimas, maximas):
    minima_slope, minima_intercept, _, _, _ = stats.linregress(minimas[:, 0], minimas[:, 1])
    maxima_slope, maxima_intercept, _, _, _ = stats.linregress(maximas[:, 0], maximas[:, 1])
    min_se = []
    max_se = []
    for [x, y] in minimas:
        min_ny = minima_slope * x + minima_intercept
        min_se.append(abs(min_ny - y))
    for [x, y] in maximas:
        max_ny = maxima_slope * x + maxima_intercept
        max_se.append(abs(max_ny - y))
    min_se, max_se = np.asarray(min_se), np.asarray(max_se)
    new_minimas = minimas[min_se < np.mean(min_se)]
    new_maximas = maximas[max_se < np.mean(max_se)]
    if len(new_minimas) > 5:
        minima_slope, minima_intercept, _, _, _ = stats.linregress(new_minimas[:, 0], new_minimas[:, 1])
    if len(new_maximas) > 5:
        maxima_slope, maxima_intercept, _, _, _ = stats.linregress(new_maximas[:, 0], new_maximas[:, 1])

    return minima_slope, minima_intercept, maxima_slope, maxima_intercept


def draw_commands(commands):
    im = Image.fromarray(np.zeros([160, 750]))
    dr = ImageDraw.Draw(im)

    px, py = 50, 100
    for i, [dx, dy, t] in enumerate(commands):
        x = px + dx * 5
        y = py + dy * 5
        if t == 0:
            dr.line((px, py, x, y), 255, 1)
        px, py = x, y

    return im


def draw_points(raw_points, character_labels):
    [w, h, _] = np.max(raw_points, 0)
    im = Image.new("RGB", [int(w) + 100, int(h) + 100])
    dr = ImageDraw.Draw(im)

    colors = np.random.randint(0, 255, (len(character_labels[0]), 3))

    for i, [x, y, t] in enumerate(raw_points):
        if i > 0:
            if pt == 0:
                dr.line((px, py, x, y), tuple(colors[np.argmax(character_labels[i])]), 3)
        px, py, pt = x, y, t

    return im