decoupled-style-descriptors / convenience.py
brayden-gg
improved speed of char interpolation
9c37eb2
raw
history blame
22.4 kB
import os
import re
from random import random
import torch
import pickle
import argparse
import numpy as np
from helper import *
from PIL import Image
import torch.nn as nn
import torch.optim as optim
from config.GlobalVariables import *
from tensorboardX import SummaryWriter
from SynthesisNetwork import SynthesisNetwork
from DataLoader import DataLoader
# import ffmpeg # for problems with ffmpeg uninstall ffmpeg and then install ffmpeg-python
L = 256
def get_mean_global_W(net, loaded_data, device):
"""gets the mean global style vector for a given writer"""
[_, _, _, _, _, _, all_word_level_stroke_in, all_word_level_stroke_out, all_word_level_stroke_length, all_word_level_term, all_word_level_char, all_word_level_char_length, all_segment_level_stroke_in, all_segment_level_stroke_out,
all_segment_level_stroke_length, all_segment_level_term, all_segment_level_char, all_segment_level_char_length] = loaded_data
batch_word_level_stroke_in = [torch.FloatTensor(a).to(device) for a in all_word_level_stroke_in]
batch_word_level_stroke_out = [torch.FloatTensor(a).to(device) for a in all_word_level_stroke_out]
batch_word_level_stroke_length = [torch.LongTensor(a).to(device).unsqueeze(-1) for a in all_word_level_stroke_length]
batch_word_level_term = [torch.FloatTensor(a).to(device) for a in all_word_level_term]
batch_word_level_char = [torch.LongTensor(a).to(device) for a in all_word_level_char]
batch_word_level_char_length = [torch.LongTensor(a).to(device).unsqueeze(-1) for a in all_word_level_char_length]
batch_segment_level_stroke_in = [[torch.FloatTensor(a).to(device) for a in b] for b in all_segment_level_stroke_in]
batch_segment_level_stroke_out = [[torch.FloatTensor(a).to(device) for a in b] for b in all_segment_level_stroke_out]
batch_segment_level_stroke_length = [[torch.LongTensor(a).to(device).unsqueeze(-1) for a in b] for b in all_segment_level_stroke_length]
batch_segment_level_term = [[torch.FloatTensor(a).to(device) for a in b] for b in all_segment_level_term]
batch_segment_level_char = [[torch.LongTensor(a).to(device) for a in b] for b in all_segment_level_char]
batch_segment_level_char_length = [[torch.LongTensor(a).to(device).unsqueeze(-1) for a in b] for b in all_segment_level_char_length]
with torch.no_grad():
word_inf_state_out = net.inf_state_fc1(batch_word_level_stroke_out[0])
word_inf_state_out = net.inf_state_relu(word_inf_state_out)
word_inf_state_out, _ = net.inf_state_lstm(word_inf_state_out)
user_word_level_char = batch_word_level_char[0]
user_word_level_term = batch_word_level_term[0]
original_Wc = []
word_batch_id = 0
curr_seq_len = batch_word_level_stroke_length[0][word_batch_id][0]
curr_char_len = batch_word_level_char_length[0][word_batch_id][0]
char_vector = torch.eye(len(CHARACTERS))[user_word_level_char[word_batch_id][:curr_char_len]].to(device)
current_term = user_word_level_term[word_batch_id][:curr_seq_len].unsqueeze(-1)
split_ids = torch.nonzero(current_term)[:, 0]
char_vector_1 = net.char_vec_fc_1(char_vector)
char_vector_1 = net.char_vec_relu_1(char_vector_1)
char_out_1 = char_vector_1.unsqueeze(0)
char_out_1, (c, h) = net.char_lstm_1(char_out_1)
char_out_1 = char_out_1.squeeze(0)
char_out_1 = net.char_vec_fc2_1(char_out_1)
char_matrix_1 = char_out_1.view([-1, 1, 256, 256])
char_matrix_1 = char_matrix_1.squeeze(1)
char_matrix_inv_1 = torch.inverse(char_matrix_1)
W_c_t = word_inf_state_out[word_batch_id][:curr_seq_len]
W_c = torch.stack([W_c_t[i] for i in split_ids])
original_Wc.append(W_c)
W = torch.bmm(char_matrix_inv_1, W_c.unsqueeze(2)).squeeze(-1)
mean_global_W = torch.mean(W, 0)
return mean_global_W
def get_DSD(net, target_word, writer_mean_Ws, all_loaded_data, device):
"""
returns a style vector and character matrix for each character/segment in target_word
n is the number of writers
M is the number of characters in the target word
L is the latent vector size (in this case 256)
input:
- target_word, a string of length M to be converted to a DSD
- writer_mean_Ws, a list of n style vectors of size L
output:
- all_writer_Ws, a tensor of size n x M x L representing the style vectors for each writer and character
- all_writer_Cs, a tensor of size n x M x L x L representing the corresponding character matrix
"""
n = len(all_loaded_data)
M = len(target_word)
all_writer_Ws = torch.zeros(n, M, L)
all_writer_Cs = torch.zeros(n, M, L, L)
for i in range(n):
np.random.seed(0)
[_, _, _, _, _, _, all_word_level_stroke_in, all_word_level_stroke_out, all_word_level_stroke_length, all_word_level_term, all_word_level_char, all_word_level_char_length, all_segment_level_stroke_in, all_segment_level_stroke_out,
all_segment_level_stroke_length, all_segment_level_term, all_segment_level_char, all_segment_level_char_length] = all_loaded_data[i]
available_segments = {}
for sid, sentence in enumerate(all_segment_level_char[0]):
for wid, word in enumerate(sentence):
segment = ''.join([CHARACTERS[i] for i in word])
split_ids = np.asarray(np.nonzero(all_segment_level_term[0][sid][wid]))
if segment in available_segments:
available_segments[segment].append([all_segment_level_stroke_out[0][sid][wid][:all_segment_level_stroke_length[0][sid][wid]], split_ids])
else:
available_segments[segment] = [[all_segment_level_stroke_out[0][sid][wid][:all_segment_level_stroke_length[0][sid][wid]], split_ids]]
index = 0
all_W = []
all_C = []
# while index <= len(target_word):
while index < len(target_word):
available = False
# Currently this just uses each character individually instead of the whole segment
# for end_index in range(len(target_word), index, -1):
# segment = target_word[index:end_index]
# print (segment)
segment = target_word[index]
if segment in available_segments: # method beta
# print(f'in dic - {segment}')
available = True
candidates = available_segments[segment]
segment_level_stroke_out, split_ids = candidates[np.random.randint(len(candidates))]
out = net.inf_state_fc1(torch.FloatTensor(segment_level_stroke_out).to(device).unsqueeze(0))
out = net.inf_state_relu(out)
seg_W_c, (h_n, _) = net.inf_state_lstm(out)
character = segment[0] # take the first character of the segment?
# get character matrix using same method as method beta
char_vector = torch.eye(len(CHARACTERS))[CHARACTERS.index(character)].to(device).unsqueeze(0)
out = net.char_vec_fc_1(char_vector)
out = net.char_vec_relu_1(out)
out, _ = net.char_lstm_1(out.unsqueeze(0))
out = out.squeeze(0)
out = net.char_vec_fc2_1(out)
char_matrix = out.view([-1, 256, 256])
inv_char_matrix = char_matrix.inverse()
id = split_ids[0][0]
W_c_vector = seg_W_c[0, id].squeeze()
# invert to get writer-independed DSD
W_vector = torch.bmm(inv_char_matrix, W_c_vector.repeat(inv_char_matrix.size(0), 1).unsqueeze(2))
all_W.append(W_vector)
all_C.append(char_matrix)
index += 1
if index == len(target_word):
break
if not available: # method alpha
character = target_word[index]
# print(f'no dic - {character}')
char_vector = torch.eye(len(CHARACTERS))[CHARACTERS.index(character)].to(device).unsqueeze(0)
out = net.char_vec_fc_1(char_vector)
out = net.char_vec_relu_1(out)
out, _ = net.char_lstm_1(out.unsqueeze(0))
out = out.squeeze(0)
out = net.char_vec_fc2_1(out)
char_matrix = out.view([-1, 256, 256])
W_vector = writer_mean_Ws[i].repeat(char_matrix.size(0), 1).unsqueeze(2)
# all_W.append([W_vector])
all_W.append(W_vector)
all_C.append(char_matrix)
index += 1
all_writer_Ws[i, :, :] = torch.stack(all_W).squeeze()
all_writer_Cs[i, :, :, :] = torch.stack(all_C).squeeze()
return all_writer_Ws, all_writer_Cs
def get_writer_blend_W_c(writer_weights, all_Ws, all_Cs):
"""
generates character-dependent style-dependent DSDs for each character/segement in target_word,
averaging together the styles of the handwritings using provided weights
n is the number of writers
M is the number of characters in the target word
L is the latent vector size (in this case 256)
input:
- writer_weights, a list of length n weights for each writer that sum to one
- all_writer_Ws, an n x M x L tensor representing each weiter's style vector for every character
- all_writer_Cs, an n x M x L x L tensor representing the style's correspodning character matrix
output:
- an M x 1 x L tensor of M scharacter-dependent style-dependent DSDs
"""
n, M, _ = all_Ws.shape
weights_tensor = torch.tensor(writer_weights).repeat_interleave(M * L).reshape(n, M, L) # repeat accross remaining dimensions
W_vectors = (weights_tensor * all_Ws).sum(axis=0).unsqueeze(-1) # take weighted sum accross writers axis
char_matrices = all_Cs[0, :, :, :] # character matrices are independent of writer
W_cs = torch.bmm(char_matrices, W_vectors)
return W_cs.reshape(M, 1, L)
def get_character_blend_W_c(character_weights, all_Ws, all_Cs):
"""
generates a single character-dependent style-dependent DSD,
averaging together the characters using provided weights
M is the number of characters to blend
L is the latent vector size (in this case 256)
input:
- character_weights, a list of length M weights for each character that sum to one
- all_Ws, a 1 x M x L tensor representing the wwiter's style vector for each character
- all_Cs, 1 x M x L x L tensor representing the style's correspodning character matrix
output:
- a 1 x 1 x L tensor representing the character-dependent style-dependent DSDs
"""
M = len(character_weights)
W_vector = all_Ws[0, 0, :].unsqueeze(-1)
weights_tensor = torch.tensor(character_weights).repeat_interleave(L * L).reshape(1, M, L, L) # repeat accross remaining dimensions
char_matrix = (weights_tensor * all_Cs).sum(axis=1).squeeze() # take weighted sum accross characters axis
W_c = char_matrix @ W_vector
return W_c.reshape(1, 1, L)
def get_commands(net, target_word, all_W_c): # seems like target_word is only used for length
"""converts character-dependent style-dependent DSDs to a list of commands for drawing"""
all_commands = []
current_id = 0
while True:
word_Wc_rec_TYPE_D = []
TYPE_D_REF = []
cid = 0
for segment_batch_id in range(len(all_W_c)):
if len(TYPE_D_REF) == 0:
for each_segment_Wc in all_W_c[segment_batch_id]:
if cid >= current_id:
word_Wc_rec_TYPE_D.append(each_segment_Wc)
cid += 1
if len(word_Wc_rec_TYPE_D) > 0:
TYPE_D_REF.append(all_W_c[segment_batch_id][-1])
else:
for each_segment_Wc in all_W_c[segment_batch_id]:
magic_inp = torch.cat([torch.stack(TYPE_D_REF, 0), each_segment_Wc.unsqueeze(0)], 0)
magic_inp = magic_inp.unsqueeze(0)
TYPE_D_out, (c, h) = net.magic_lstm(magic_inp)
TYPE_D_out = TYPE_D_out.squeeze(0)
word_Wc_rec_TYPE_D.append(TYPE_D_out[-1])
TYPE_D_REF.append(all_W_c[segment_batch_id][-1])
WC_ = torch.stack(word_Wc_rec_TYPE_D)
tmp_commands, res = net.sample_from_w_fix(WC_)
current_id += res
if len(all_commands) == 0:
all_commands.append(tmp_commands)
else:
all_commands.append(tmp_commands[1:])
if res < 0 or current_id >= len(target_word):
break
commands = []
px, py = 0, 100
for coms in all_commands:
for i, [dx, dy, t] in enumerate(coms):
x = px + dx * 5
y = py + dy * 5
commands.append([x, y, t])
px, py = x, y
commands = np.asarray(commands)
commands[:, 0] -= np.min(commands[:, 0])
return commands
def mdn_video(target_word, num_samples, scale_sd, clamp_mdn, net, all_loaded_data, device):
'''
Method creating gif of mdn samples
num_samples: number of samples to be inputted
max_scale: the maximum value used to scale SD while sampling (increment is based on num samples)
'''
words = target_word.split(' ')
us_target_word = re.sub(r"\s+", '_', target_word)
os.makedirs(f"./results/{us_target_word}_mdn_samples", exist_ok=True)
for i in range(num_samples):
net.scale_sd = scale_sd
net.clamp_mdn = clamp_mdn
mean_global_W = get_mean_global_W(net, all_loaded_data[0], device)
word_Ws = []
word_Cs = []
for word in words:
writer_Ws, writer_Cs = get_DSD(net, word, [mean_global_W], [all_loaded_data[0]], device)
word_Ws.append(writer_Ws)
word_Cs.append(writer_Cs)
im = draw_words(words, word_Ws, word_Cs, [1], net)
im.convert("RGB").save(f'results/{us_target_word}_mdn_samples/sample_{i}.png')
# Convert fromes to video using ffmpeg
photos = ffmpeg.input(f'results/{us_target_word}_mdn_samples/sample_*.png', pattern_type='glob', framerate=10)
videos = photos.output(f'results/{us_target_word}_video.mov', vcodec="libx264", pix_fmt="yuv420p")
videos.run(overwrite_output=True)
def sample_blended_writers(writer_weights, target_sentence, net, all_loaded_data, device="cpu"):
"""Generates an image of handwritten text based on target_sentence"""
words = target_sentence.split(' ')
writer_mean_Ws = []
for loaded_data in all_loaded_data:
mean_global_W = get_mean_global_W(net, loaded_data, device)
writer_mean_Ws.append(mean_global_W)
word_Ws = []
word_Cs = []
for word in words:
writer_Ws, writer_Cs = get_DSD(net, word, writer_mean_Ws, all_loaded_data, device)
word_Ws.append(writer_Ws)
word_Cs.append(writer_Cs)
return draw_words(words, word_Ws, word_Cs, writer_weights, net)
def sample_character_grid(letters, grid_size, net, all_loaded_data, device="cpu"):
"""Generates an image of handwritten text based on target_sentence"""
width = 60
im = Image.fromarray(np.zeros([(grid_size + 1) * width, (grid_size + 1) * width]))
dr = ImageDraw.Draw(im)
M = len(letters)
mean_global_W = get_mean_global_W(net, all_loaded_data[0], device)
# all_Ws = torch.zeros(1, M, L)
all_Cs = torch.zeros(1, M, L, L)
for i in range(M): # get corners of grid
W_vector, char_matrix = get_DSD(net, letters[i], [mean_global_W], [all_loaded_data[0]], device)
# all_Ws[:, i, :] = W_vector
all_Cs[:, i, :, :] = char_matrix
all_Ws = mean_global_W.reshape(1, 1, L)
for i in range(grid_size):
for j in range(grid_size):
wx = i / (grid_size - 1)
wy = j / (grid_size - 1)
character_weights = [(1 - wx) * (1 - wy), # top left is 1 at (0, 0)
wx * (1 - wy), # top right is 1 at (1, 0)
(1 - wx) * wy, # bottom left is 1 at (0, 1)
wx * wy] # bottom right is 1 at (1, 1)
all_W_c = get_character_blend_W_c(character_weights, all_Ws, all_Cs)
all_commands = get_commands(net, letters[0], all_W_c)
offset_x = i * width
offset_y = j * width
for [x, y, t] in all_commands:
if t == 0:
dr.line((
px + offset_x + width/2,
py + offset_y - width/2, # letters are shifted down for some reason
x + offset_x + width/2,
y + offset_y - width/2), 255, 1)
px, py = x, y
return im
def writer_interpolation_video(target_sentence, transition_time, net, all_loaded_data, device="cpu"):
"""
Generates a video of interpolating between each provided writer
"""
n = len(all_loaded_data)
os.makedirs(f"./results/{target_sentence}_blend_frames", exist_ok=True)
words = target_sentence.split(' ')
writer_mean_Ws = []
for loaded_data in all_loaded_data:
mean_global_W = get_mean_global_W(net, loaded_data, device)
writer_mean_Ws.append(mean_global_W)
word_Ws = []
word_Cs = []
for word in words:
all_writer_Ws, all_writer_Cs = get_DSD(net, word, writer_mean_Ws, all_loaded_data, device)
word_Ws.append(all_writer_Ws)
word_Cs.append(all_writer_Cs)
for i in range(n - 1):
for j in range(transition_time):
completion = j/(transition_time)
individual_weights = [1 - completion, completion]
writer_weights = [0] * i + individual_weights + [0] * (n - 2 - i)
im = draw_words(words, word_Ws, word_Cs, writer_weights, net)
im.convert("RGB").save(f"./results/{target_sentence}_blend_frames/frame_{str(i * transition_time + j).zfill(3)}.png")
# Convert fromes to video using ffmpeg
photos = ffmpeg.input(f"./results/{target_sentence}_blend_frames/frame_*.png", pattern_type='glob', framerate=10)
videos = photos.output(f"results/{target_sentence}_blend_video.mov", vcodec="libx264", pix_fmt="yuv420p")
videos.run(overwrite_output=True)
def mdn_single_sample(target_word, scale_sd, clamp_mdn, net, all_loaded_data, device):
'''
Method creating gif of mdn samples
num_samples: number of samples to be inputted
max_scale: the maximum value used to scale SD while sampling (increment is based on num samples)
'''
words = target_word.split(' ')
net.scale_sd = scale_sd
net.clamp_mdn = clamp_mdn
mean_global_W = get_mean_global_W(net, all_loaded_data[0], device)
word_Ws = []
word_Cs = []
for word in words:
writer_Ws, writer_Cs = get_DSD(net, word, [mean_global_W], [all_loaded_data[0]], device)
word_Ws.append(writer_Ws)
word_Cs.append(writer_Cs)
return draw_words(words, word_Ws, word_Cs, [1], net)
def sample_blended_chars(character_weights, letters, net, all_loaded_data, device="cpu"):
"""Generates an image of handwritten text based on target_sentence"""
M = len(letters)
mean_global_W = get_mean_global_W(net, all_loaded_data[0], device)
all_Cs = torch.zeros(1, M, L, L)
for i in range(M): # get corners of grid
W_vector, char_matrix = get_DSD(net, letters[i], [mean_global_W], [all_loaded_data[0]], device)
all_Cs[:, i, :, :] = char_matrix
all_Ws = mean_global_W.reshape(1, 1, L)
all_W_c = get_character_blend_W_c(character_weights, all_Ws, all_Cs)
all_commands = get_commands(net, letters[0], all_W_c)
im = commands_to_image(all_commands, 100, 100, 30, 30)
return im
def char_interpolation_video(letters, transition_time, net, all_loaded_data, device="cpu"):
"""Generates an image of handwritten text based on target_sentence"""
os.makedirs(f"./results/{''.join(letters)}_frames", exist_ok=True) # make a folder for the frames
M = len(letters)
mean_global_W = get_mean_global_W(net, all_loaded_data[0], device)
all_Cs = torch.zeros(1, M, L, L)
for i in range(M): # get corners of grid
W_vector, char_matrix = get_DSD(net, letters[i], [mean_global_W], [all_loaded_data[0]], device)
all_Cs[:, i, :, :] = char_matrix
all_Ws = mean_global_W.reshape(1, 1, L)
for i in range(M - 1):
for j in range(transition_time):
completion = j / (transition_time - 1)
individual_weights = [1 - completion, completion]
character_weights = [0] * i + individual_weights + [0] * (M - 2 - i)
all_W_c = get_character_blend_W_c(character_weights, all_Ws, all_Cs)
all_commands = get_commands(net, letters[i], all_W_c)
im = commands_to_image(all_commands, 100, 100, 25, 25)
im.convert("RGB").save(f"results/{''.join(letters)}_frames/frames_{str(i * transition_time + j).zfill(3)}.png")
# Convert fromes to video using ffmpeg
photos = ffmpeg.input(f"results/{''.join(letters)}_frames/frames_*.png", pattern_type='glob', framerate=24)
videos = photos.output(f"results/{''.join(letters)}_video.mov", vcodec="libx264", pix_fmt="yuv420p")
videos.run(overwrite_output=True)
def draw_words(words, word_Ws, word_Cs, writer_weights, net):
im = Image.fromarray(np.zeros([160, 750]))
dr = ImageDraw.Draw(im)
width = 50
for word, all_writer_Ws, all_writer_Cs in zip(words, word_Ws, word_Cs):
all_W_c = get_writer_blend_W_c(writer_weights, all_writer_Ws, all_writer_Cs)
all_commands = get_commands(net, word, all_W_c)
for [x, y, t] in all_commands:
if t == 0:
dr.line((px+width, py, x+width, y), 255, 1)
px, py = x, y
width += np.max(all_commands[:, 0]) + 25
return im
def commands_to_image(commands, imW, imH, xoff, yoff):
im = Image.fromarray(np.zeros([imW, imH]))
dr = ImageDraw.Draw(im)
for [x, y, t] in commands:
if t == 0:
dr.line((
px + xoff,
py - yoff, # letters are shifted down for some reason
x + xoff,
y - yoff), 255, 1)
px, py = x, y
return im