brayden-gg commited on
Commit
3e4d521
·
1 Parent(s): a21775a

set max randomness to 0 for writer/char blends

Browse files
Files changed (2) hide show
  1. .gitignore +1 -0
  2. app.py +4 -12
.gitignore CHANGED
@@ -5,6 +5,7 @@ data/writers/*
5
  *.gif
6
  results/
7
  samples/
 
8
 
9
  !/data/writers/5
10
  !/data/writers/14
 
5
  *.gif
6
  results/
7
  samples/
8
+ __pycache__/
9
 
10
  !/data/writers/5
11
  !/data/writers/14
app.py CHANGED
@@ -15,10 +15,7 @@ num_samples = 10
15
  net = SynthesisNetwork(weight_dim=256, num_layers=3).to(device)
16
 
17
  if not torch.cuda.is_available():
18
- try: # retrained model also contains loss in dict
19
- net.load_state_dict(torch.load('./model/250000.pt', map_location=torch.device(device))["model_state_dict"])
20
- except:
21
- net.load_state_dict(torch.load('./model/250000.pt', map_location=torch.device(device)))
22
 
23
 
24
  dl = DataLoader(num_writer=1, num_samples=10, divider=5.0, datadir='./data/writers')
@@ -39,7 +36,8 @@ def interpolate_writers(target_word, weight):
39
  return image
40
 
41
  def choose_blend_writers(writer1, writer2):
42
- id1, id2 = int(writer1.split(" ")[1]), int(writer1.split(" ")[1])
 
43
  all_loaded_data.clear()
44
  for writer_id in [id1, id2]:
45
  loaded_data = dl.next_batch(TYPE='TRAIN', uid=writer_id, tids=list(range(num_samples)))
@@ -54,16 +52,10 @@ def choose_writer(writ, c1, c2, c3, c4, val):
54
  all_loaded_data.append(loaded_data)
55
  return char_grid(c1, c2, c3, c4, val)
56
  '''
57
- # for character grrid
58
- def choose_grid_chars(c1, c2, c3, c4):
59
- return gr.Button.update(value=f"Blend {c1}, {c2}, {c3}, and {c4}!")
60
-
61
- def char_grid(c1, c2, c3, c4):
62
- image = convenience.sample_character_grid([c1, c2, c3, c4], 5, net, [default_loaded_data], device).convert("RGB")
63
- return image
64
 
65
  # for character blend
66
  def interpolate_chars(c1, c2, weight):
 
67
  image = convenience.sample_blended_chars([1 - weight, weight], [c1, c2], net, [default_loaded_data], device).convert("RGB")
68
  return image
69
 
 
15
  net = SynthesisNetwork(weight_dim=256, num_layers=3).to(device)
16
 
17
  if not torch.cuda.is_available():
18
+ net.load_state_dict(torch.load('./model/250000.pt', map_location=torch.device(device))["model_state_dict"])
 
 
 
19
 
20
 
21
  dl = DataLoader(num_writer=1, num_samples=10, divider=5.0, datadir='./data/writers')
 
36
  return image
37
 
38
  def choose_blend_writers(writer1, writer2):
39
+ net.clamp_mdn = 0
40
+ id1, id2 = int(writer1.split(" ")[1]), int(writer2.split(" ")[1])
41
  all_loaded_data.clear()
42
  for writer_id in [id1, id2]:
43
  loaded_data = dl.next_batch(TYPE='TRAIN', uid=writer_id, tids=list(range(num_samples)))
 
52
  all_loaded_data.append(loaded_data)
53
  return char_grid(c1, c2, c3, c4, val)
54
  '''
 
 
 
 
 
 
 
55
 
56
  # for character blend
57
  def interpolate_chars(c1, c2, weight):
58
+ net.clamp_mdn = 0
59
  image = convenience.sample_blended_chars([1 - weight, weight], [c1, c2], net, [default_loaded_data], device).convert("RGB")
60
  return image
61