Spaces:
Runtime error
Runtime error
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""TODO: Add a description here.""" | |
from typing import List | |
import evaluate | |
import datasets | |
# TODO: Add BibTeX citation | |
_CITATION = """\ | |
@InProceedings{huggingface:module, | |
title = {A great new module}, | |
authors={huggingface, Inc.}, | |
year={2020} | |
} | |
""" | |
# TODO: Add description of the module here | |
_DESCRIPTION = """\ | |
This new module is designed to solve this great ML task and is crafted with a lot of care. | |
""" | |
# TODO: Add description of the arguments of the module here | |
_KWARGS_DESCRIPTION = """ | |
Calculates how good are predictions given some references, using certain scores | |
Args: | |
predictions: list of predictions to score. Each predictions | |
should be a string with tokens separated by spaces. | |
references: list of reference for each prediction. Each | |
reference should be a string with tokens separated by spaces. | |
Returns: | |
accuracy: description of the first score, | |
another_score: description of the second score, | |
Examples: | |
Examples should be written in doctest format, and should illustrate how | |
to use the function. | |
>>> my_new_module = evaluate.load("my_new_module") | |
>>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1]) | |
>>> print(results) | |
{'accuracy': 1.0} | |
""" | |
def calculate_precision( | |
predictions: List[List[str]], | |
reference: List[List[str]] | |
) -> float: | |
precision = 0 | |
count = 0 | |
for i, d in enumerate(reference): | |
if len(d) == 0: | |
continue | |
predicted_titles = predictions[i] | |
hits = 0 | |
for title in predicted_titles: | |
if title in d: | |
hits += 1 | |
if len(predicted_titles) != 0: | |
precision += hits / len(predicted_titles) | |
count += 1 | |
return precision / count | |
def calculate_recall( | |
predictions: List[List[str]], | |
reference: List[List[str]] | |
) -> float: | |
recall = 0 | |
count = 0 | |
for i, d in enumerate(reference): | |
if len(d) == 0: | |
continue | |
predicted_titles = predictions[i] | |
hits = 0 | |
for title in predicted_titles: | |
if title in d: | |
hits += 1 | |
recall += hits / len(d) | |
count += 1 | |
return recall / count | |
beta = 0.7 | |
class DocRetrieveMetrics(evaluate.Metric): | |
"""TODO: Short description of my evaluation module.""" | |
def _info(self): | |
# TODO: Specifies the evaluate.EvaluationModuleInfo object | |
return evaluate.MetricInfo( | |
# This is the description that will appear on the modules page. | |
module_type="metric", | |
description=_DESCRIPTION, | |
citation=_CITATION, | |
inputs_description=_KWARGS_DESCRIPTION, | |
# This defines the format of each prediction and reference | |
features=datasets.Features({ | |
"predictions": datasets.Sequence(datasets.Value("string")), | |
"references": datasets.Sequence(datasets.Value("string")), | |
}), | |
# Homepage of the module for documentation | |
homepage="http://module.homepage", | |
# Additional links to the codebase or references | |
codebase_urls=["http://github.com/path/to/codebase/of/new_module"], | |
reference_urls=["http://path.to.reference.url/new_module"] | |
) | |
def _download_and_prepare(self, dl_manager): | |
"""Optional: download external resources useful to compute the scores""" | |
# TODO: Download external resources if needed | |
pass | |
def _compute(self, predictions, references): | |
recall = calculate_recall(predictions, references) | |
precision = calculate_precision(predictions, references) | |
f_score = (1 + beta*beta) * precision * recall / (beta * beta*precision + recall) | |
return { | |
"f1": float( | |
f_score | |
) | |
} | |