RSS_News / rss_processor.py
broadfield-dev's picture
Update rss_processor.py
15033cb verified
raw
history blame
9.96 kB
import os
import feedparser
from langchain.vectorstores import Chroma
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.docstore.document import Document
import logging
from huggingface_hub import HfApi, login
import shutil
import rss_feeds
# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Constants
MAX_ARTICLES_PER_FEED = 1000
LOCAL_DB_DIR = "chroma_db"
RSS_FEEDS = rss_feeds.RSS_FEEDS
COLLECTION_NAME = "news_articles" # Explicitly name the collection
HF_API_TOKEN = os.getenv("DEMO_HF_API_TOKEN", "YOUR_HF_API_TOKEN")
REPO_ID = "broadfield-dev/news-rag-db"
# Initialize Hugging Face API
login(token=HF_API_TOKEN)
hf_api = HfApi()
# Initialize embedding model (global, reusable)
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
# Initialize vector DB with a specific collection name
vector_db = Chroma(
persist_directory=LOCAL_DB_DIR,
embedding_function=embedding_model,
collection_name=COLLECTION_NAME
)
from datetime import datetime
import dateutil.parser # Add this dependency: pip install python-dateutil
def fetch_rss_feeds():
articles = []
seen_keys = set()
for feed_url in RSS_FEEDS:
try:
logger.info(f"Fetching {feed_url}")
feed = feedparser.parse(feed_url)
if feed.bozo:
logger.warning(f"Parse error for {feed_url}: {feed.bozo_exception}")
continue
article_count = 0
for entry in feed.entries:
if article_count >= MAX_ARTICLES_PER_FEED:
break
title = entry.get("title", "No Title").strip()
link = entry.get("link", "").strip()
description = entry.get("summary", entry.get("description", "No Description")).strip()
# Try multiple date fields and parse flexibly
published = "Unknown Date"
for date_field in ["published", "updated", "created"]:
if date_field in entry:
try:
parsed_date = dateutil.parser.parse(entry[date_field])
published = parsed_date.strftime("%Y-%m-%d %H:%M:%S")
break
except (ValueError, TypeError) as e:
logger.debug(f"Failed to parse {date_field} '{entry[date_field]}': {e}")
continue
key = f"{title}|{link}|{published}"
if key not in seen_keys:
seen_keys.add(key)
# Try multiple image sources
image = "svg" # Default fallback
for img_source in [
lambda e: e.get("media_content", [{}])[0].get("url"),
lambda e: e.get("media_thumbnail", [{}])[0].get("url"),
lambda e: e.get("enclosure", {}).get("url"),
lambda e: next((lnk.get("href") for lnk in e.get("links", []) if lnk.get("type", "").startswith("image")), None),
]:
try:
img = img_source(entry)
if img:
image = img
break
except (IndexError, AttributeError, TypeError):
continue
articles.append({
"title": title,
"link": link,
"description": description,
"published": published,
"category": categorize_feed(feed_url),
"image": image,
})
article_count += 1
except Exception as e:
logger.error(f"Error fetching {feed_url}: {e}")
logger.info(f"Total articles fetched: {len(articles)}")
return articles
def categorize_feed(url):
if "nature" in url or "science.org" in url or "arxiv.org" in url or "plos.org" in url or "annualreviews.org" in url or "journals.uchicago.edu" in url or "jneurosci.org" in url or "cell.com" in url or "nejm.org" in url or "lancet.com" in url:
return "Academic Papers"
elif "reuters.com/business" in url or "bloomberg.com" in url or "ft.com" in url or "marketwatch.com" in url or "cnbc.com" in url or "foxbusiness.com" in url or "wsj.com" in url or "bworldonline.com" in url or "economist.com" in url or "forbes.com" in url:
return "Business"
elif "investing.com" in url or "cnbc.com/market" in url or "marketwatch.com/market" in url or "fool.co.uk" in url or "zacks.com" in url or "seekingalpha.com" in url or "barrons.com" in url or "yahoofinance.com" in url:
return "Stocks & Markets"
elif "whitehouse.gov" in url or "state.gov" in url or "commerce.gov" in url or "transportation.gov" in url or "ed.gov" in url or "dol.gov" in url or "justice.gov" in url or "federalreserve.gov" in url or "occ.gov" in url or "sec.gov" in url or "bls.gov" in url or "usda.gov" in url or "gao.gov" in url or "cbo.gov" in url or "fema.gov" in url or "defense.gov" in url or "hhs.gov" in url or "energy.gov" in url or "interior.gov" in url:
return "Federal Government"
elif "weather.gov" in url or "metoffice.gov.uk" in url or "accuweather.com" in url or "weatherunderground.com" in url or "noaa.gov" in url or "wunderground.com" in url or "climate.gov" in url or "ecmwf.int" in url or "bom.gov.au" in url:
return "Weather"
elif "data.worldbank.org" in url or "imf.org" in url or "un.org" in url or "oecd.org" in url or "statista.com" in url or "kff.org" in url or "who.int" in url or "cdc.gov" in url or "bea.gov" in url or "census.gov" in url or "fdic.gov" in url:
return "Data & Statistics"
elif "nasa" in url or "spaceweatherlive" in url or "space" in url or "universetoday" in url or "skyandtelescope" in url or "esa" in url:
return "Space"
elif "sciencedaily" in url or "quantamagazine" in url or "smithsonianmag" in url or "popsci" in url or "discovermagazine" in url or "scientificamerican" in url or "newscientist" in url or "livescience" in url or "atlasobscura" in url:
return "Science"
elif "wired" in url or "techcrunch" in url or "arstechnica" in url or "gizmodo" in url or "theverge" in url:
return "Tech"
elif "horoscope" in url or "astrostyle" in url:
return "Astrology"
elif "cnn_allpolitics" in url or "bbci.co.uk/news/politics" in url or "reuters.com/arc/outboundfeeds/newsletter-politics" in url or "politico.com/rss/politics" in url or "thehill" in url:
return "Politics"
elif "weather" in url or "swpc.noaa.gov" in url or "foxweather" in url:
return "Earth Weather"
elif "vogue" in url:
return "Lifestyle"
elif "phys.org" in url or "aps.org" in url or "physicsworld" in url:
return "Physics"
return "Uncategorized"
def process_and_store_articles(articles):
documents = []
existing_ids = set(vector_db.get()["ids"]) # Get existing document IDs to avoid duplicates
for article in articles:
try:
# Create a unique ID for deduplication
doc_id = f"{article['title']}|{article['link']}|{article['published']}"
if doc_id in existing_ids:
continue # Skip if already in DB
metadata = {
"title": article["title"],
"link": article["link"],
"original_description": article["description"],
"published": article["published"],
"category": article["category"],
"image": article["image"],
}
doc = Document(page_content=article["description"], metadata=metadata, id=doc_id)
documents.append(doc)
except Exception as e:
logger.error(f"Error processing article {article['title']}: {e}")
if documents:
try:
vector_db.add_documents(documents)
vector_db.persist() # Explicitly persist changes
logger.info(f"Added {len(documents)} new articles to DB")
except Exception as e:
logger.error(f"Error storing articles: {e}")
def download_from_hf_hub():
# Only download if the local DB doesn’t exist (initial setup)
if not os.path.exists(LOCAL_DB_DIR):
try:
hf_api.create_repo(repo_id=REPO_ID, repo_type="dataset", exist_ok=True, token=HF_API_TOKEN)
logger.info(f"Downloading Chroma DB from {REPO_ID}...")
hf_api.download_repo(repo_id=REPO_ID, repo_type="dataset", local_dir=LOCAL_DB_DIR, token=HF_API_TOKEN)
except Exception as e:
logger.error(f"Error downloading from Hugging Face Hub: {e}")
raise
else:
logger.info("Local Chroma DB already exists, skipping download.")
def upload_to_hf_hub():
if os.path.exists(LOCAL_DB_DIR):
try:
logger.info(f"Uploading updated Chroma DB to {REPO_ID}...")
for root, _, files in os.walk(LOCAL_DB_DIR):
for file in files:
local_path = os.path.join(root, file)
remote_path = os.path.relpath(local_path, LOCAL_DB_DIR)
hf_api.upload_file(
path_or_fileobj=local_path,
path_in_repo=remote_path,
repo_id=REPO_ID,
repo_type="dataset",
token=HF_API_TOKEN
)
logger.info(f"Database uploaded to: {REPO_ID}")
except Exception as e:
logger.error(f"Error uploading to Hugging Face Hub: {e}")
raise
if __name__ == "__main__":
articles = fetch_rss_feeds()
process_and_store_articles(articles)
upload_to_hf_hub()