Spaces:
Running
Running
# rss_processor.py | |
import os | |
import feedparser | |
from langchain.vectorstores import Chroma | |
from langchain.embeddings import HuggingFaceEmbeddings | |
from langchain.docstore.document import Document | |
import logging | |
from huggingface_hub import HfApi, login | |
import shutil | |
import rss_feeds | |
from datetime import datetime | |
import dateutil.parser | |
import hashlib | |
import re | |
# Setup logging | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
# Constants | |
MAX_ARTICLES_PER_FEED = 10 | |
LOCAL_DB_DIR = "chroma_db" | |
RSS_FEEDS = rss_feeds.RSS_FEEDS | |
COLLECTION_NAME = "news_articles" | |
HF_API_TOKEN = os.getenv("DEMO_HF_API_TOKEN", "YOUR_HF_API_TOKEN") | |
REPO_ID = "broadfield-dev/news-rag-db" | |
# Initialize Hugging Face API | |
login(token=HF_API_TOKEN) | |
hf_api = HfApi() | |
# Initialize embedding model (global, reusable) | |
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") | |
# Initialize vector DB with a specific collection name | |
vector_db = Chroma( | |
persist_directory=LOCAL_DB_DIR, | |
embedding_function=embedding_model, | |
collection_name=COLLECTION_NAME | |
) | |
def clean_text(text): | |
"""Clean text by removing HTML tags and extra whitespace.""" | |
if not text or not isinstance(text, str): | |
return "" | |
text = re.sub(r'<.*?>', '', text) | |
text = ' '.join(text.split()) | |
return text.strip().lower() | |
def fetch_rss_feeds(): | |
articles = [] | |
seen_keys = set() | |
for feed_url in RSS_FEEDS: | |
try: | |
logger.info(f"Fetching {feed_url}") | |
feed = feedparser.parse(feed_url) | |
if feed.bozo: | |
logger.warning(f"Parse error for {feed_url}: {feed.bozo_exception}") | |
continue | |
article_count = 0 | |
for entry in feed.entries: | |
if article_count >= MAX_ARTICLES_PER_FEED: | |
break | |
title = entry.get("title", "No Title") | |
link = entry.get("link", "") | |
description = entry.get("summary", entry.get("description", "")) | |
title = clean_text(title) | |
link = clean_text(link) | |
description = clean_text(description) | |
published = "Unknown Date" | |
for date_field in ["published", "updated", "created", "pubDate"]: | |
if date_field in entry: | |
try: | |
parsed_date = dateutil.parser.parse(entry[date_field]) | |
published = parsed_date.strftime("%Y-%m-%d %H:%M:%S") | |
break | |
except (ValueError, TypeError) as e: | |
logger.debug(f"Failed to parse {date_field} '{entry[date_field]}': {e}") | |
continue | |
description_hash = hashlib.sha256(description.encode('utf-8')).hexdigest() | |
key = f"{title}|{link}|{published}|{description_hash}" | |
if key not in seen_keys: | |
seen_keys.add(key) | |
image = "svg" | |
for img_source in [ | |
lambda e: clean_text(e.get("media_content", [{}])[0].get("url")) if e.get("media_content") else "", | |
lambda e: clean_text(e.get("media_thumbnail", [{}])[0].get("url")) if e.get("media_thumbnail") else "", | |
lambda e: clean_text(e.get("enclosure", {}).get("url")) if e.get("enclosure") else "", | |
lambda e: clean_text(next((lnk.get("href") for lnk in e.get("links", []) if lnk.get("type", "").startswith("image")), "")), | |
]: | |
try: | |
img = img_source(entry) | |
if img and img.strip(): | |
image = img | |
break | |
except (IndexError, AttributeError, TypeError): | |
continue | |
articles.append({ | |
"title": title, | |
"link": link, | |
"description": description, | |
"published": published, | |
"category": categorize_feed(feed_url), | |
"image": image, | |
}) | |
article_count += 1 | |
except Exception as e: | |
logger.error(f"Error fetching {feed_url}: {e}") | |
logger.info(f"Total articles fetched: {len(articles)}") | |
return articles | |
def categorize_feed(url): | |
"""Categorize an RSS feed based on its URL.""" | |
if not url or not isinstance(url, str): | |
logger.warning(f"Invalid URL provided for categorization: {url}") | |
return "Uncategorized" | |
url = url.lower().strip() # Normalize the URL | |
logger.debug(f"Categorizing URL: {url}") # Add debugging for visibility | |
if any(keyword in url for keyword in ["nature", "science.org", "arxiv.org", "plos.org", "annualreviews.org", "journals.uchicago.edu", "jneurosci.org", "cell.com", "nejm.org", "lancet.com"]): | |
return "Academic Papers" | |
elif any(keyword in url for keyword in ["reuters.com/business", "bloomberg.com", "ft.com", "marketwatch.com", "cnbc.com", "foxbusiness.com", "wsj.com", "bworldonline.com", "economist.com", "forbes.com"]): | |
return "Business" | |
elif any(keyword in url for keyword in ["investing.com", "cnbc.com/market", "marketwatch.com/market", "fool.co.uk", "zacks.com", "seekingalpha.com", "barrons.com", "yahoofinance.com"]): | |
return "Stocks & Markets" | |
elif any(keyword in url for keyword in ["whitehouse.gov", "state.gov", "commerce.gov", "transportation.gov", "ed.gov", "dol.gov", "justice.gov", "federalreserve.gov", "occ.gov", "sec.gov", "bls.gov", "usda.gov", "gao.gov", "cbo.gov", "fema.gov", "defense.gov", "hhs.gov", "energy.gov", "interior.gov"]): | |
return "Federal Government" | |
elif any(keyword in url for keyword in ["weather.gov", "metoffice.gov.uk", "accuweather.com", "weatherunderground.com", "noaa.gov", "wunderground.com", "climate.gov", "ecmwf.int", "bom.gov.au"]): | |
return "Weather" | |
elif any(keyword in url for keyword in ["data.worldbank.org", "imf.org", "un.org", "oecd.org", "statista.com", "kff.org", "who.int", "cdc.gov", "bea.gov", "census.gov", "fdic.gov"]): | |
return "Data & Statistics" | |
elif any(keyword in url for keyword in ["nasa", "spaceweatherlive", "space", "universetoday", "skyandtelescope", "esa"]): | |
return "Space" | |
elif any(keyword in url for keyword in ["sciencedaily", "quantamagazine", "smithsonianmag", "popsci", "discovermagazine", "scientificamerican", "newscientist", "livescience", "atlasobscura"]): | |
return "Science" | |
elif any(keyword in url for keyword in ["wired", "techcrunch", "arstechnica", "gizmodo", "theverge"]): | |
return "Tech" | |
elif any(keyword in url for keyword in ["horoscope", "astrostyle"]): | |
return "Astrology" | |
elif any(keyword in url for keyword in ["cnn_allpolitics", "bbci.co.uk/news/politics", "reuters.com/arc/outboundfeeds/newsletter-politics", "politico.com/rss/politics", "thehill"]): | |
return "Politics" | |
elif any(keyword in url for keyword in ["weather", "swpc.noaa.gov", "foxweather"]): | |
return "Earth Weather" | |
elif "vogue" in url: | |
return "Lifestyle" | |
elif any(keyword in url for keyword in ["phys.org", "aps.org", "physicsworld"]): | |
return "Physics" | |
else: | |
logger.warning(f"No matching category found for URL: {url}") | |
return "Uncategorized" | |
def process_and_store_articles(articles): | |
documents = [] | |
existing_ids = set(vector_db.get()["ids"]) # Load existing IDs once | |
for article in articles: | |
try: | |
title = clean_text(article["title"]) | |
link = clean_text(article["link"]) | |
description = clean_text(article["description"]) | |
published = article["published"] | |
description_hash = hashlib.sha256(description.encode('utf-8')).hexdigest() | |
doc_id = f"{title}|{link}|{published}|{description_hash}" | |
if doc_id in existing_ids: | |
logger.debug(f"Skipping duplicate in DB: {doc_id}") | |
continue | |
metadata = { | |
"title": article["title"], | |
"link": article["link"], | |
"original_description": article["description"], | |
"published": article["published"], | |
"category": article["category"], | |
"image": article["image"], | |
} | |
doc = Document(page_content=description, metadata=metadata, id=doc_id) | |
documents.append(doc) | |
existing_ids.add(doc_id) # Update in-memory set to avoid duplicates within this batch | |
except Exception as e: | |
logger.error(f"Error processing article {article['title']}: {e}") | |
if documents: | |
try: | |
vector_db.add_documents(documents) | |
vector_db.persist() | |
logger.info(f"Added {len(documents)} new articles to DB. Total documents: {len(vector_db.get()['ids'])}") | |
except Exception as e: | |
logger.error(f"Error storing articles: {e}") | |
def download_from_hf_hub(): | |
if not os.path.exists(LOCAL_DB_DIR): | |
try: | |
hf_api.create_repo(repo_id=REPO_ID, repo_type="dataset", exist_ok=True, token=HF_API_TOKEN) | |
logger.info(f"Downloading Chroma DB from {REPO_ID}...") | |
hf_api.hf_hub_download(repo_id=REPO_ID, filename="chroma_db", local_dir=LOCAL_DB_DIR, repo_type="dataset", token=HF_API_TOKEN) | |
except Exception as e: | |
logger.error(f"Error downloading from Hugging Face Hub: {e}") | |
else: | |
logger.info("Local Chroma DB exists, loading existing data.") | |
def upload_to_hf_hub(): | |
if os.path.exists(LOCAL_DB_DIR): | |
try: | |
logger.info(f"Uploading updated Chroma DB to {REPO_ID}...") | |
for root, _, files in os.walk(LOCAL_DB_DIR): | |
for file in files: | |
local_path = os.path.join(root, file) | |
remote_path = os.path.relpath(local_path, LOCAL_DB_DIR) | |
hf_api.upload_file( | |
path_or_fileobj=local_path, | |
path_in_repo=remote_path, | |
repo_id=REPO_ID, | |
repo_type="dataset", | |
token=HF_API_TOKEN | |
) | |
logger.info(f"Database uploaded to: {REPO_ID}") | |
except Exception as e: | |
logger.error(f"Error uploading to Hugging Face Hub: {e}") | |
if __name__ == "__main__": | |
download_from_hf_hub() # Ensure DB is initialized | |
articles = fetch_rss_feeds() | |
process_and_store_articles(articles) | |
upload_to_hf_hub() |