Spaces:
Running
Running
File size: 10,620 Bytes
3a7387c ce02056 3a7387c ce02056 c30dd10 3a7387c ce02056 7de2c28 3a7387c ce02056 3a7387c ce02056 3a7387c ce02056 3a7387c ce02056 3a7387c ce02056 3a7387c ce02056 3a7387c ce02056 3a7387c ce02056 3a7387c ce02056 3a7387c ce02056 3a7387c ce02056 3a7387c ce02056 3a7387c ce02056 3a7387c ce02056 3a7387c ce02056 3a7387c ce02056 3a7387c ce02056 3a7387c ce02056 3a7387c ce02056 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
import os
import feedparser
from flask import Flask, render_template, request
from huggingface_hub import HfApi, Repository
from langchain_huggingface import HuggingFaceInferenceClient
from langchain.vectorstores import Chroma
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.docstore.document import Document
import requests
import shutil
# Flask app setup
app = Flask(__name__)
# Hugging Face setup
HF_API_TOKEN = os.getenv("HF_API_TOKEN", "YOUR_HF_API_TOKEN")
HF_MODEL = "Qwen/Qwen-72B-Instruct"
REPO_ID = "broadfield-dev/news-rag-db"
LOCAL_DB_DIR = "chroma_db"
client = HuggingFaceInferenceClient(model=HF_MODEL, api_key=HF_API_TOKEN)
RSS_FEEDS = [
"https://www.sciencedaily.com/rss/top/science.xml",
"https://www.horoscope.com/us/horoscopes/general/rss/horoscope-rss.aspx",
"http://rss.cnn.com/rss/cnn_allpolitics.rss",
"https://phys.org/rss-feed/physics-news/",
"https://www.spaceweatherlive.com/en/news/rss",
"https://weather.com/feeds/rss",
"https://www.wired.com/feed/rss",
"https://www.nasa.gov/rss/dyn/breaking_news.rss",
"https://www.nationalgeographic.com/feed/",
"https://www.nature.com/nature.rss",
"https://www.scientificamerican.com/rss/",
"https://www.newscientist.com/feed/home/",
"https://www.livescience.com/feeds/all",
"https://www.hindustantimes.com/feed/horoscope/rss",
"https://www.washingtonpost.com/wp-srv/style/horoscopes/rss.xml",
"https://astrostyle.com/feed/",
"https://www.vogue.com/feed/rss",
"https://feeds.bbci.co.uk/news/politics/rss.xml",
"https://www.reuters.com/arc/outboundfeeds/newsletter-politics/?outputType=xml",
"https://www.politico.com/rss/politics.xml",
"https://thehill.com/feed/",
"https://www.aps.org/publications/apsnews/updates/rss.cfm",
"https://www.quantamagazine.org/feed/",
"https://www.sciencedaily.com/rss/matter_energy/physics.xml",
"https://physicsworld.com/feed/",
"https://www.swpc.noaa.gov/rss.xml",
"https://www.nasa.gov/rss/dyn/solar_system.rss",
"https://weather.com/science/space/rss",
"https://www.space.com/feeds/space-weather",
"https://www.accuweather.com/en/rss",
"https://feeds.bbci.co.uk/weather/feeds/rss/5day/world/",
"https://www.weather.gov/rss",
"https://www.foxweather.com/rss",
"https://techcrunch.com/feed/",
"https://arstechnica.com/feed/",
"https://gizmodo.com/rss",
"https://www.theverge.com/rss/index.xml",
"https://www.space.com/feeds/all",
"https://www.universetoday.com/feed/",
"https://skyandtelescope.org/feed/",
"https://www.esa.int/rss",
"https://www.smithsonianmag.com/rss/",
"https://www.popsci.com/rss.xml",
"https://www.discovermagazine.com/rss",
"https://www.atlasobscura.com/feeds/latest"
]
# Embedding model
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
vector_db = Chroma(persist_directory=LOCAL_DB_DIR, embedding_function=embedding_model)
hf_api = HfApi()
def fetch_rss_feeds():
articles = []
for feed_url in RSS_FEEDS:
feed = feedparser.parse(feed_url)
for entry in feed.entries[:5]: # Limit to 5 per feed
articles.append({
"title": entry.get("title", "No Title"),
"link": entry.get("link", ""),
"description": entry.get("summary", entry.get("description", "No Description")),
"published": entry.get("published", "Unknown Date"),
"category": categorize_feed(feed_url),
})
return articles
def categorize_feed(url):
"""Simple categorization based on URL."""
if "sciencedaily" in url or "phys.org" in url:
return "Science & Physics"
elif "horoscope" in url:
return "Astrology"
elif "politics" in url:
return "Politics"
elif "spaceweather" in url or "nasa" in url:
return "Solar & Space"
elif "weather" in url:
return "Earth Weather"
else:
return "Cool Stuff"
def summarize_article(text):
prompt = f"Summarize the following text concisely:\n\n{text}"
response = client.generate(prompt, max_new_tokens=100, temperature=0.7)
return response.generated_text.strip()
def categorize_article(text):
prompt = f"Classify the sentiment as positive, negative, or neutral:\n\n{text}"
response = client.generate(prompt, max_new_tokens=10, temperature=0.7)
return response.generated_text.strip()
def process_and_store_articles(articles):
documents = []
for article in articles:
summary = summarize_article(article["description"])
sentiment = categorize_article(article["description"])
doc = Document(
page_content=summary,
metadata={
"title": article["title"],
"link": article["link"],
"original_description": article["description"],
"published": article["published"],
"category": article["category"],
"sentiment": sentiment,
}
)
documents.append(doc)
vector_db.add_documents(documents)
vector_db.persist()
upload_to_hf_hub()
def upload_to_hf_hub():
if os.path.exists(LOCAL_DB_DIR):
try:
hf_api.create_repo(repo_id=REPO_ID, repo_type="dataset", exist_ok=True)
except Exception as e:
print(f"Error creating repo: {e}")
for root, _, files in os.walk(LOCAL_DB_DIR):
for file in files:
local_path = os.path.join(root, file)
remote_path = os.path.relpath(local_path, LOCAL_DB_DIR)
hf_api.upload_file(
path_or_fileobj=local_path,
path_in_repo=remote_path,
repo_id=REPO_ID,
repo_type="dataset",
token=HF_API_TOKEN
)
print(f"Database uploaded to: {REPO_ID}")
@app.route('/', methods=['GET', 'POST'])
def index():
articles = fetch_rss_feeds()
process_and_store_articles(articles)
stored_docs = vector_db.similarity_search("news", k=len(articles))
enriched_articles = [
{
"title": doc.metadata["title"],
"link": doc.metadata["link"],
"summary": doc.page_content,
"category": doc.metadata["category"],
"sentiment": doc.metadata["sentiment"],
"published": doc.metadata["published"],
}
for doc in stored_docs
]
if request.method == 'POST':
query = request.form.get('search')
if query:
results = vector_db.similarity_search(query, k=10)
enriched_articles = [
{
"title": doc.metadata["title"],
"link": doc.metadata["link"],
"summary": doc.page_content,
"category": doc.metadata["category"],
"sentiment": doc.metadata["sentiment"],
"published": doc.metadata["published"],
}
for doc in results
]
# Organize by category
categorized_articles = {}
for article in enriched_articles:
cat = article["category"]
if cat not in categorized_articles:
categorized_articles[cat] = []
categorized_articles[cat].append(article)
return render_template("index.html", categorized_articles=categorized_articles)
# Updated HTML template
HTML_TEMPLATE = """
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>News Feed Hub</title>
<style>
body {
font-family: 'Arial', sans-serif;
margin: 0;
padding: 20px;
background-color: #f4f4f9;
color: #333;
}
h1 {
text-align: center;
color: #2c3e50;
}
.search-container {
text-align: center;
margin: 20px 0;
}
.search-bar {
width: 50%;
padding: 12px;
font-size: 16px;
border: 2px solid #3498db;
border-radius: 25px;
box-shadow: 0 2px 5px rgba(0,0,0,0.1);
outline: none;
transition: border-color 0.3s;
}
.search-bar:focus {
border-color: #2980b9;
}
.category-section {
margin: 30px 0;
}
.category-title {
background-color: #3498db;
color: white;
padding: 10px;
border-radius: 5px;
font-size: 1.4em;
}
.article {
background-color: white;
padding: 15px;
margin: 10px 0;
border-radius: 8px;
box-shadow: 0 2px 5px rgba(0,0,0,0.1);
transition: transform 0.2s;
}
.article:hover {
transform: translateY(-3px);
}
.title a {
font-size: 1.2em;
color: #2c3e50;
text-decoration: none;
}
.title a:hover {
color: #3498db;
}
.summary {
color: #555;
margin: 5px 0;
}
.sentiment {
font-style: italic;
color: #7f8c8d;
}
.published {
font-size: 0.9em;
color: #95a5a6;
}
</style>
</head>
<body>
<h1>News Feed Hub</h1>
<div class="search-container">
<form method="POST">
<input type="text" name="search" class="search-bar" placeholder="Search news semantically...">
</form>
</div>
{% for category, articles in categorized_articles.items() %}
<div class="category-section">
<div class="category-title">{{ category }}</div>
{% for article in articles %}
<div class="article">
<div class="title"><a href="{{ article.link }}" target="_blank">{{ article.title }}</a></div>
<div class="summary">{{ article.summary }}</div>
<div class="sentiment">Sentiment: {{ article.sentiment }}</div>
<div class="published">Published: {{ article.published }}</div>
</div>
{% endfor %}
</div>
{% endfor %}
</body>
</html>
"""
if __name__ == "__main__":
os.makedirs("templates", exist_ok=True)
with open("templates/index.html", "w") as f:
f.write(HTML_TEMPLATE)
if os.path.exists(LOCAL_DB_DIR):
shutil.rmtree(LOCAL_DB_DIR)
app.run(host="0.0.0.0", port=7560) |