Spaces:
Running
Running
import os | |
import feedparser | |
from flask import Flask, render_template, request | |
from huggingface_hub import HfApi, Repository | |
from langchain_huggingface import HuggingFaceInferenceClient | |
from langchain.vectorstores import Chroma | |
from langchain.embeddings import HuggingFaceEmbeddings | |
from langchain.docstore.document import Document | |
import requests | |
import shutil | |
# Flask app setup | |
app = Flask(__name__) | |
# Hugging Face setup | |
HF_API_TOKEN = os.getenv("HF_API_TOKEN", "YOUR_HF_API_TOKEN") | |
HF_MODEL = "Qwen/Qwen-72B-Instruct" | |
REPO_ID = "broadfield-dev/news-rag-db" | |
LOCAL_DB_DIR = "chroma_db" | |
client = HuggingFaceInferenceClient(model=HF_MODEL, api_key=HF_API_TOKEN) | |
RSS_FEEDS = [ | |
"https://www.sciencedaily.com/rss/top/science.xml", | |
"https://www.horoscope.com/us/horoscopes/general/rss/horoscope-rss.aspx", | |
"http://rss.cnn.com/rss/cnn_allpolitics.rss", | |
"https://phys.org/rss-feed/physics-news/", | |
"https://www.spaceweatherlive.com/en/news/rss", | |
"https://weather.com/feeds/rss", | |
"https://www.wired.com/feed/rss", | |
"https://www.nasa.gov/rss/dyn/breaking_news.rss", | |
"https://www.nationalgeographic.com/feed/", | |
"https://www.nature.com/nature.rss", | |
"https://www.scientificamerican.com/rss/", | |
"https://www.newscientist.com/feed/home/", | |
"https://www.livescience.com/feeds/all", | |
"https://www.hindustantimes.com/feed/horoscope/rss", | |
"https://www.washingtonpost.com/wp-srv/style/horoscopes/rss.xml", | |
"https://astrostyle.com/feed/", | |
"https://www.vogue.com/feed/rss", | |
"https://feeds.bbci.co.uk/news/politics/rss.xml", | |
"https://www.reuters.com/arc/outboundfeeds/newsletter-politics/?outputType=xml", | |
"https://www.politico.com/rss/politics.xml", | |
"https://thehill.com/feed/", | |
"https://www.aps.org/publications/apsnews/updates/rss.cfm", | |
"https://www.quantamagazine.org/feed/", | |
"https://www.sciencedaily.com/rss/matter_energy/physics.xml", | |
"https://physicsworld.com/feed/", | |
"https://www.swpc.noaa.gov/rss.xml", | |
"https://www.nasa.gov/rss/dyn/solar_system.rss", | |
"https://weather.com/science/space/rss", | |
"https://www.space.com/feeds/space-weather", | |
"https://www.accuweather.com/en/rss", | |
"https://feeds.bbci.co.uk/weather/feeds/rss/5day/world/", | |
"https://www.weather.gov/rss", | |
"https://www.foxweather.com/rss", | |
"https://techcrunch.com/feed/", | |
"https://arstechnica.com/feed/", | |
"https://gizmodo.com/rss", | |
"https://www.theverge.com/rss/index.xml", | |
"https://www.space.com/feeds/all", | |
"https://www.universetoday.com/feed/", | |
"https://skyandtelescope.org/feed/", | |
"https://www.esa.int/rss", | |
"https://www.smithsonianmag.com/rss/", | |
"https://www.popsci.com/rss.xml", | |
"https://www.discovermagazine.com/rss", | |
"https://www.atlasobscura.com/feeds/latest" | |
] | |
# Embedding model | |
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") | |
vector_db = Chroma(persist_directory=LOCAL_DB_DIR, embedding_function=embedding_model) | |
hf_api = HfApi() | |
def fetch_rss_feeds(): | |
articles = [] | |
for feed_url in RSS_FEEDS: | |
feed = feedparser.parse(feed_url) | |
for entry in feed.entries[:5]: # Limit to 5 per feed | |
articles.append({ | |
"title": entry.get("title", "No Title"), | |
"link": entry.get("link", ""), | |
"description": entry.get("summary", entry.get("description", "No Description")), | |
"published": entry.get("published", "Unknown Date"), | |
"category": categorize_feed(feed_url), | |
}) | |
return articles | |
def categorize_feed(url): | |
"""Simple categorization based on URL.""" | |
if "sciencedaily" in url or "phys.org" in url: | |
return "Science & Physics" | |
elif "horoscope" in url: | |
return "Astrology" | |
elif "politics" in url: | |
return "Politics" | |
elif "spaceweather" in url or "nasa" in url: | |
return "Solar & Space" | |
elif "weather" in url: | |
return "Earth Weather" | |
else: | |
return "Cool Stuff" | |
def summarize_article(text): | |
prompt = f"Summarize the following text concisely:\n\n{text}" | |
response = client.generate(prompt, max_new_tokens=100, temperature=0.7) | |
return response.generated_text.strip() | |
def categorize_article(text): | |
prompt = f"Classify the sentiment as positive, negative, or neutral:\n\n{text}" | |
response = client.generate(prompt, max_new_tokens=10, temperature=0.7) | |
return response.generated_text.strip() | |
def process_and_store_articles(articles): | |
documents = [] | |
for article in articles: | |
summary = summarize_article(article["description"]) | |
sentiment = categorize_article(article["description"]) | |
doc = Document( | |
page_content=summary, | |
metadata={ | |
"title": article["title"], | |
"link": article["link"], | |
"original_description": article["description"], | |
"published": article["published"], | |
"category": article["category"], | |
"sentiment": sentiment, | |
} | |
) | |
documents.append(doc) | |
vector_db.add_documents(documents) | |
vector_db.persist() | |
upload_to_hf_hub() | |
def upload_to_hf_hub(): | |
if os.path.exists(LOCAL_DB_DIR): | |
try: | |
hf_api.create_repo(repo_id=REPO_ID, repo_type="dataset", exist_ok=True) | |
except Exception as e: | |
print(f"Error creating repo: {e}") | |
for root, _, files in os.walk(LOCAL_DB_DIR): | |
for file in files: | |
local_path = os.path.join(root, file) | |
remote_path = os.path.relpath(local_path, LOCAL_DB_DIR) | |
hf_api.upload_file( | |
path_or_fileobj=local_path, | |
path_in_repo=remote_path, | |
repo_id=REPO_ID, | |
repo_type="dataset", | |
token=HF_API_TOKEN | |
) | |
print(f"Database uploaded to: {REPO_ID}") | |
def index(): | |
articles = fetch_rss_feeds() | |
process_and_store_articles(articles) | |
stored_docs = vector_db.similarity_search("news", k=len(articles)) | |
enriched_articles = [ | |
{ | |
"title": doc.metadata["title"], | |
"link": doc.metadata["link"], | |
"summary": doc.page_content, | |
"category": doc.metadata["category"], | |
"sentiment": doc.metadata["sentiment"], | |
"published": doc.metadata["published"], | |
} | |
for doc in stored_docs | |
] | |
if request.method == 'POST': | |
query = request.form.get('search') | |
if query: | |
results = vector_db.similarity_search(query, k=10) | |
enriched_articles = [ | |
{ | |
"title": doc.metadata["title"], | |
"link": doc.metadata["link"], | |
"summary": doc.page_content, | |
"category": doc.metadata["category"], | |
"sentiment": doc.metadata["sentiment"], | |
"published": doc.metadata["published"], | |
} | |
for doc in results | |
] | |
# Organize by category | |
categorized_articles = {} | |
for article in enriched_articles: | |
cat = article["category"] | |
if cat not in categorized_articles: | |
categorized_articles[cat] = [] | |
categorized_articles[cat].append(article) | |
return render_template("index.html", categorized_articles=categorized_articles) | |
# Updated HTML template | |
HTML_TEMPLATE = """ | |
<!DOCTYPE html> | |
<html lang="en"> | |
<head> | |
<meta charset="UTF-8"> | |
<meta name="viewport" content="width=device-width, initial-scale=1.0"> | |
<title>News Feed Hub</title> | |
<style> | |
body { | |
font-family: 'Arial', sans-serif; | |
margin: 0; | |
padding: 20px; | |
background-color: #f4f4f9; | |
color: #333; | |
} | |
h1 { | |
text-align: center; | |
color: #2c3e50; | |
} | |
.search-container { | |
text-align: center; | |
margin: 20px 0; | |
} | |
.search-bar { | |
width: 50%; | |
padding: 12px; | |
font-size: 16px; | |
border: 2px solid #3498db; | |
border-radius: 25px; | |
box-shadow: 0 2px 5px rgba(0,0,0,0.1); | |
outline: none; | |
transition: border-color 0.3s; | |
} | |
.search-bar:focus { | |
border-color: #2980b9; | |
} | |
.category-section { | |
margin: 30px 0; | |
} | |
.category-title { | |
background-color: #3498db; | |
color: white; | |
padding: 10px; | |
border-radius: 5px; | |
font-size: 1.4em; | |
} | |
.article { | |
background-color: white; | |
padding: 15px; | |
margin: 10px 0; | |
border-radius: 8px; | |
box-shadow: 0 2px 5px rgba(0,0,0,0.1); | |
transition: transform 0.2s; | |
} | |
.article:hover { | |
transform: translateY(-3px); | |
} | |
.title a { | |
font-size: 1.2em; | |
color: #2c3e50; | |
text-decoration: none; | |
} | |
.title a:hover { | |
color: #3498db; | |
} | |
.summary { | |
color: #555; | |
margin: 5px 0; | |
} | |
.sentiment { | |
font-style: italic; | |
color: #7f8c8d; | |
} | |
.published { | |
font-size: 0.9em; | |
color: #95a5a6; | |
} | |
</style> | |
</head> | |
<body> | |
<h1>News Feed Hub</h1> | |
<div class="search-container"> | |
<form method="POST"> | |
<input type="text" name="search" class="search-bar" placeholder="Search news semantically..."> | |
</form> | |
</div> | |
{% for category, articles in categorized_articles.items() %} | |
<div class="category-section"> | |
<div class="category-title">{{ category }}</div> | |
{% for article in articles %} | |
<div class="article"> | |
<div class="title"><a href="{{ article.link }}" target="_blank">{{ article.title }}</a></div> | |
<div class="summary">{{ article.summary }}</div> | |
<div class="sentiment">Sentiment: {{ article.sentiment }}</div> | |
<div class="published">Published: {{ article.published }}</div> | |
</div> | |
{% endfor %} | |
</div> | |
{% endfor %} | |
</body> | |
</html> | |
""" | |
if __name__ == "__main__": | |
os.makedirs("templates", exist_ok=True) | |
with open("templates/index.html", "w") as f: | |
f.write(HTML_TEMPLATE) | |
if os.path.exists(LOCAL_DB_DIR): | |
shutil.rmtree(LOCAL_DB_DIR) | |
app.run(host="0.0.0.0", port=7560) |