Update modules/supply_failure.py

#8
by pranshh - opened
Files changed (1) hide show
  1. modules/supply_failure.py +106 -263
modules/supply_failure.py CHANGED
@@ -1,12 +1,6 @@
1
- from flask import Blueprint, render_template, request, jsonify, redirect, url_for, flash, session
2
  import pandas as pd
3
  import numpy as np
4
- import plotly.express as px
5
- import plotly.utils
6
- import json
7
- import os
8
- import joblib
9
- from datetime import datetime
10
  from sklearn.model_selection import train_test_split
11
  from sklearn.preprocessing import StandardScaler, LabelEncoder
12
  from sklearn.ensemble import RandomForestClassifier
@@ -15,20 +9,18 @@ import random
15
 
16
  supply_failure_bp = Blueprint('supply_failure', __name__, url_prefix='/predict/supply_failure')
17
 
18
- UPLOAD_FOLDER = 'temp_uploads'
19
- os.makedirs(UPLOAD_FOLDER, exist_ok=True)
 
 
 
 
 
 
20
 
21
- def get_current_df_supply():
22
- try:
23
- csv_path = session.get('supply_csv_path')
24
- if csv_path and os.path.exists(csv_path):
25
- return pd.read_csv(csv_path)
26
- return None
27
- except Exception as e:
28
- print(f"Error in get_current_df_supply: {str(e)}")
29
- return None
30
 
31
  def get_summary_stats_supply(df):
 
32
  return {
33
  'total_rows': len(df),
34
  'total_columns': len(df.columns),
@@ -39,76 +31,50 @@ def get_summary_stats_supply(df):
39
  }
40
 
41
  def preprocess_data_supply(df, for_prediction=False, label_encoders=None):
 
42
  df_processed = df.copy()
43
-
44
- # Identify date columns based on known names
45
- date_cols = ['order_date', 'promised_delivery_date', 'actual_delivery_date']
46
 
47
- # Process date columns: extract features and drop original
 
 
48
  for col in date_cols:
49
  if col in df_processed.columns:
50
- # Convert to datetime, coercing errors to NaT
51
  df_processed[col] = pd.to_datetime(df_processed[col], errors='coerce')
52
-
53
- # Extract features only if there are valid datetime values
54
- if not df_processed[col].isnull().all():
55
- df_processed[f'{col}_day_of_week'] = df_processed[col].dt.dayofweek.fillna(-1) # -1 for NaN dates
56
- df_processed[f'{col}_month'] = df_processed[col].dt.month.fillna(-1)
57
- df_processed[f'{col}_year'] = df_processed[col].dt.year.fillna(-1)
58
- df_processed[f'{col}_day'] = df_processed[col].dt.day.fillna(-1)
59
- else: # If all dates are NaT, add dummy columns filled with -1
60
- df_processed[f'{col}_day_of_week'] = -1
61
- df_processed[f'{col}_month'] = -1
62
- df_processed[f'{col}_year'] = -1
63
- df_processed[f'{col}_day'] = -1
64
  df_processed = df_processed.drop(columns=[col])
65
 
66
- # Identify numerical and categorical columns after date processing
67
- categorical_columns = []
68
- numerical_columns = []
69
-
70
- for column in df_processed.columns:
71
- if pd.api.types.is_numeric_dtype(df_processed[column]):
72
- numerical_columns.append(column)
73
- else:
74
- try:
75
- # Attempt to convert to numeric, if successful, it's numeric
76
- if pd.to_numeric(df_processed[column].dropna()).notna().all():
77
- numerical_columns.append(column)
78
- else:
79
- categorical_columns.append(column)
80
- except ValueError:
81
- categorical_columns.append(column)
82
-
83
- # Encode categorical variables
84
  current_label_encoders = {}
85
- if not for_prediction: # During training, fit and save encoders
86
  for col in categorical_columns:
87
  if col in df_processed.columns:
88
  le = LabelEncoder()
89
- df_processed[col] = le.fit_transform(df_processed[col].astype(str).fillna('missing_value'))
90
  current_label_encoders[col] = le
91
- else: # For prediction, use provided encoders
92
  for col, le in label_encoders.items():
93
  if col in df_processed.columns:
94
- df_processed[col] = df_processed[col].astype(str).apply(
95
- lambda x: le.transform([x])[0] if x in le.classes_ else -1
96
- )
97
 
98
- # Ensure numerical columns are truly numeric and fill any NaNs
99
- for col in numerical_columns:
100
- if col in df_processed.columns:
101
- df_processed[col] = pd.to_numeric(df_processed[col], errors='coerce').fillna(0) # Fill numerical NaNs with 0
102
 
103
  return df_processed, current_label_encoders
104
 
105
 
106
  @supply_failure_bp.route('/', methods=['GET'])
107
  def show_supply_failure():
 
108
  return render_template('supply_failure.html', title="Supply Failure Prediction")
109
 
 
110
  @supply_failure_bp.route('/upload_file_supply', methods=['POST'])
111
  def upload_file_supply():
 
 
112
  if 'supply_file' not in request.files:
113
  flash('No file selected')
114
  return redirect(url_for('supply_failure.show_supply_failure'))
@@ -119,71 +85,53 @@ def upload_file_supply():
119
  return redirect(url_for('supply_failure.show_supply_failure'))
120
 
121
  try:
122
- timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
123
- safe_filename = f"supply_data_{timestamp}.csv"
124
- file_path = os.path.join(UPLOAD_FOLDER, safe_filename)
125
-
126
- file.save(file_path)
127
- session['supply_csv_path'] = file_path
128
-
129
- df = pd.read_csv(file_path)
130
- preview_data = df.head().to_dict('records')
131
- summary_stats = get_summary_stats_supply(df)
132
- session['original_columns_supply'] = df.columns.tolist()
133
 
134
  return render_template('supply_failure.html',
135
  title="Supply Failure Prediction",
136
  preview_data=preview_data,
137
- columns=df.columns.tolist(),
138
  summary_stats=summary_stats)
139
-
140
  except Exception as e:
141
  flash(f'Error processing file: {str(e)}')
142
  return redirect(url_for('supply_failure.show_supply_failure'))
143
 
 
144
  @supply_failure_bp.route('/run_prediction', methods=['POST'])
145
  def run_prediction_supply():
146
- try:
147
- df = get_current_df_supply()
148
- if df is None:
149
- return jsonify({'success': False, 'error': 'No data available. Please upload a CSV file first.'})
150
-
151
- target_col = 'failure_flag' # Fixed target column as per definition
152
 
153
- df_processed, label_encoders = preprocess_data_supply(df.copy(), for_prediction=False)
154
-
155
- encoders_path = os.path.join(UPLOAD_FOLDER, f'supply_encoders_{datetime.now().strftime("%Y%m%d_%H%M%S")}.joblib')
156
- joblib.dump(label_encoders, encoders_path)
157
- session['supply_encoders_path'] = encoders_path
158
 
159
- if target_col not in df_processed.columns:
160
- return jsonify({'success': False, 'error': f"Target column '{target_col}' not found after preprocessing. Check if it was dropped or transformed incorrectly."})
161
 
162
- X = df_processed.drop(columns=[target_col])
163
- y = df_processed[target_col]
 
164
 
165
  X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
166
- scaler = StandardScaler()
167
- X_train_scaled = scaler.fit_transform(X_train)
168
- X_test_scaled = scaler.transform(X_test)
169
-
170
- clf = RandomForestClassifier(random_state=42)
171
- clf.fit(X_train_scaled, y_train)
172
- y_pred = clf.predict(X_test_scaled)
173
-
174
- importances = clf.feature_importances_
175
- feature_names = X.columns
176
- feature_importance = sorted(
177
- zip(feature_names, importances),
178
- key=lambda x: x[1],
179
- reverse=True
180
- )[:5]
181
-
182
  top_features = [{'feature': f, 'importance': float(imp)} for f, imp in feature_importance]
183
 
184
- session['supply_feature_names'] = X.columns.tolist()
185
- session['supply_target_column_name'] = target_col
186
-
187
  metrics = {
188
  'Accuracy': accuracy_score(y_test, y_pred),
189
  'Precision': precision_score(y_test, y_pred, average='weighted', zero_division=0),
@@ -191,173 +139,68 @@ def run_prediction_supply():
191
  'F1 Score': f1_score(y_test, y_pred, average='weighted', zero_division=0)
192
  }
193
 
194
- model_path = os.path.join(UPLOAD_FOLDER, f'supply_model_{datetime.now().strftime("%Y%m%d_%H%M%S")}.joblib')
195
- scaler_path = os.path.join(UPLOAD_FOLDER, f'supply_scaler_{datetime.now().strftime("%Y%m%d_%H%M%S")}.joblib')
196
-
197
- joblib.dump(clf, model_path)
198
- joblib.dump(scaler, scaler_path)
199
-
200
- session['supply_model_path'] = model_path
201
- session['supply_scaler_path'] = scaler_path
202
-
203
- return jsonify({
204
- 'success': True,
205
- 'metrics': metrics,
206
- 'top_features': top_features,
207
- })
208
-
209
  except Exception as e:
210
- print(f"Error in run_prediction_supply: {e}")
211
- return jsonify({'success': False, 'error': str(e)})
212
 
213
  @supply_failure_bp.route('/get_form_data', methods=['GET'])
214
  def get_form_data_supply():
215
- try:
216
- df = get_current_df_supply()
217
- if df is None:
218
- return jsonify({'success': False, 'error': 'No data available. Please upload a file first.'})
219
-
220
- target_col = 'failure_flag' # Fixed target column for supply chain
221
- if not target_col: # Should not happen if fixed, but good for robustness
222
- return jsonify({'success': False, 'error': 'Target column not found in session. Please run prediction first.'})
223
-
224
- # Columns to exclude from the form as requested by the user
225
- exclude_cols = ['delivery_delay_days', 'delivered_quantity', 'return_reason', 'delivery_status', 'failure_type', target_col, 'order_id', 'component_id', 'po_approval_delay_days', 'customs_clearance_days', 'actual_delivery_date']
226
-
227
- form_fields = []
228
- for col in df.columns:
229
- if col.lower() in [ec.lower() for ec in exclude_cols]:
230
- continue
231
-
232
- default_value = None
233
- if not df[col].dropna().empty:
234
- if pd.api.types.is_numeric_dtype(df[col]):
235
- min_val = df[col].min()
236
- max_val = df[col].max()
237
- if pd.isna(min_val) or pd.isna(max_val):
238
- default_value = 0.0
239
- else:
240
- default_value = round(random.uniform(float(min_val), float(max_val)), 2)
241
- elif col in ['order_date', 'promised_delivery_date', 'actual_delivery_date']:
242
- sample_date = random.choice(df[col].dropna().tolist())
243
- try:
244
- parsed_date = pd.to_datetime(sample_date)
245
- if pd.isna(parsed_date):
246
- default_value = "YYYY-MM-DD HH:MM:SS"
247
- else:
248
- default_value = parsed_date.strftime('%Y-%m-%d %H:%M:%S')
249
- except Exception:
250
- default_value = "YYYY-MM-DD HH:MM:SS"
251
- else: # Categorical or other types
252
- unique_vals_str = [str(x) for x in df[col].dropna().unique()]
253
- if unique_vals_str:
254
- default_value = random.choice(unique_vals_str)
255
- else:
256
- default_value = ""
257
-
258
- if pd.api.types.is_numeric_dtype(df[col]):
259
- form_fields.append({
260
- 'name': col,
261
- 'type': 'number',
262
- 'default_value': default_value
263
- })
264
- elif col in ['order_date', 'promised_delivery_date', 'actual_delivery_date']:
265
- form_fields.append({
266
- 'name': col,
267
- 'type': 'text',
268
- 'placeholder': 'YYYY-MM-DD HH:MM:SS',
269
- 'default_value': default_value
270
- })
271
- else: # Categorical
272
- unique_values = [str(x) for x in df[col].dropna().unique().tolist()]
273
- form_fields.append({
274
- 'name': col,
275
- 'type': 'select',
276
- 'options': unique_values,
277
- 'default_value': default_value
278
- })
279
-
280
- return jsonify({'success': True, 'form_fields': form_fields})
281
-
282
- except Exception as e:
283
- print(f"Error in get_form_data_supply: {e}")
284
- return jsonify({'success': False, 'error': str(e)})
285
 
286
 
287
  @supply_failure_bp.route('/predict_single', methods=['POST'])
288
  def predict_single_supply():
 
 
 
 
289
  try:
290
- model_path = session.get('supply_model_path')
291
- scaler_path = session.get('supply_scaler_path')
292
- encoders_path = session.get('supply_encoders_path')
293
- feature_names = session.get('supply_feature_names')
294
- target_col = session.get('supply_target_column_name')
295
- original_uploaded_columns = session.get('original_columns_supply')
296
-
297
- if not all([model_path, scaler_path, encoders_path, feature_names, target_col, original_uploaded_columns]):
298
- return jsonify({'success': False, 'error': 'Model or preprocessing artifacts not found for supply chain. Please train a model first.'})
299
-
300
- model = joblib.load(model_path)
301
- scaler = joblib.load(scaler_path)
302
- label_encoders = joblib.load(encoders_path)
303
-
304
  input_data = request.json
305
- if not input_data:
306
- return jsonify({'success': False, 'error': 'No input data provided.'})
307
-
308
- full_input_df = pd.DataFrame(columns=original_uploaded_columns)
309
- single_row_input_df = pd.DataFrame([input_data])
310
-
311
- for col in original_uploaded_columns:
312
- if col in single_row_input_df.columns:
313
- full_input_df.loc[0, col] = single_row_input_df.loc[0, col]
314
- else:
315
- full_input_df.loc[0, col] = np.nan
316
-
317
- preprocessed_input_df, _ = preprocess_data_supply(full_input_df.copy(), for_prediction=True, label_encoders=label_encoders)
318
 
319
- final_input_features = pd.DataFrame(columns=feature_names)
320
 
321
- for col in feature_names:
322
- if col in preprocessed_input_df.columns:
323
- final_input_features[col] = pd.to_numeric(preprocessed_input_df[col], errors='coerce').values
324
- else:
325
- final_input_features[col] = 0.0
326
-
327
- final_input_features = final_input_features.fillna(0.0)
328
 
329
- input_scaled = scaler.transform(final_input_features)
330
 
331
- prediction_value = model.predict(input_scaled)[0]
 
332
 
333
- # Convert prediction_value to standard Python int/float/str
334
- prediction_display = prediction_value
335
- if target_col in label_encoders and prediction_value in label_encoders[target_col].classes_: # Check if target was encoded and value is in classes
336
- prediction_display = str(label_encoders[target_col].inverse_transform([prediction_value])[0])
337
- else:
338
- if isinstance(prediction_value, np.number):
339
- prediction_display = float(prediction_value)
340
- else:
341
- prediction_display = prediction_value # Keep as is if not np.number
342
-
343
- # Convert 0/1 to "No Failure"/"Failure" based on the definition for failure_flag
344
- if prediction_display == 0 or prediction_display == "0":
345
- user_friendly_prediction = "Delivery Successful"
346
- elif prediction_display == 1 or prediction_display == "1":
347
- user_friendly_prediction = "Delivery Failed"
348
- else:
349
- user_friendly_prediction = str(prediction_display) # Fallback if target is something else
350
 
351
- probability = None
352
- if hasattr(model, 'predict_proba'):
353
- probability = model.predict_proba(input_scaled)[0].tolist()
354
- probability = [float(p) for p in probability]
355
-
356
- return jsonify({
357
- 'success': True,
358
- 'prediction': user_friendly_prediction,
359
- 'probability': probability
360
- })
361
  except Exception as e:
362
- print(f"Error in predict_single_supply: {e}")
363
- return jsonify({'success': False, 'error': str(e)})
 
1
+ from flask import Blueprint, render_template, request, jsonify, redirect, url_for, flash
2
  import pandas as pd
3
  import numpy as np
 
 
 
 
 
 
4
  from sklearn.model_selection import train_test_split
5
  from sklearn.preprocessing import StandardScaler, LabelEncoder
6
  from sklearn.ensemble import RandomForestClassifier
 
9
 
10
  supply_failure_bp = Blueprint('supply_failure', __name__, url_prefix='/predict/supply_failure')
11
 
12
+ # --- Global variables for supply module (simple logic) ---
13
+ _current_df_supply = None
14
+ _model_supply = None
15
+ _scaler_supply = None
16
+ _encoders_supply = None
17
+ _feature_names_supply = None
18
+ _original_cols_supply = None
19
+ _target_col_supply = 'failure_flag' # This is fixed for the supply module
20
 
 
 
 
 
 
 
 
 
 
21
 
22
  def get_summary_stats_supply(df):
23
+ """Helper function to get summary statistics."""
24
  return {
25
  'total_rows': len(df),
26
  'total_columns': len(df.columns),
 
31
  }
32
 
33
  def preprocess_data_supply(df, for_prediction=False, label_encoders=None):
34
+ """Helper function to preprocess supply chain data."""
35
  df_processed = df.copy()
 
 
 
36
 
37
+ date_cols = ['order_date', 'promised_delivery_date', 'actual_delivery_date']
38
+ categorical_columns = [col for col in df_processed.columns if df_processed[col].dtype == 'object' and col not in date_cols]
39
+
40
  for col in date_cols:
41
  if col in df_processed.columns:
 
42
  df_processed[col] = pd.to_datetime(df_processed[col], errors='coerce')
43
+ df_processed[f'{col}_day_of_week'] = df_processed[col].dt.dayofweek.fillna(-1)
44
+ df_processed[f'{col}_month'] = df_processed[col].dt.month.fillna(-1)
 
 
 
 
 
 
 
 
 
 
45
  df_processed = df_processed.drop(columns=[col])
46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47
  current_label_encoders = {}
48
+ if not for_prediction:
49
  for col in categorical_columns:
50
  if col in df_processed.columns:
51
  le = LabelEncoder()
52
+ df_processed[col] = le.fit_transform(df_processed[col].astype(str).fillna('missing'))
53
  current_label_encoders[col] = le
54
+ else:
55
  for col, le in label_encoders.items():
56
  if col in df_processed.columns:
57
+ df_processed[col] = df_processed[col].astype(str).fillna('missing').apply(
58
+ lambda x: le.transform([x])[0] if x in le.classes_ else -1)
 
59
 
60
+ # Fill any remaining NaNs in numeric columns
61
+ numeric_cols = df_processed.select_dtypes(include=np.number).columns
62
+ for col in numeric_cols:
63
+ df_processed[col] = df_processed[col].fillna(0) # Fill with 0 or another sensible default
64
 
65
  return df_processed, current_label_encoders
66
 
67
 
68
  @supply_failure_bp.route('/', methods=['GET'])
69
  def show_supply_failure():
70
+ """Renders the main page for the supply failure tool."""
71
  return render_template('supply_failure.html', title="Supply Failure Prediction")
72
 
73
+
74
  @supply_failure_bp.route('/upload_file_supply', methods=['POST'])
75
  def upload_file_supply():
76
+ """Handles file upload and displays data preview."""
77
+ global _current_df_supply, _original_cols_supply
78
  if 'supply_file' not in request.files:
79
  flash('No file selected')
80
  return redirect(url_for('supply_failure.show_supply_failure'))
 
85
  return redirect(url_for('supply_failure.show_supply_failure'))
86
 
87
  try:
88
+ _current_df_supply = pd.read_csv(file)
89
+ _original_cols_supply = _current_df_supply.columns.tolist()
90
+ preview_data = _current_df_supply.head().to_dict('records')
91
+ summary_stats = get_summary_stats_supply(_current_df_supply)
 
 
 
 
 
 
 
92
 
93
  return render_template('supply_failure.html',
94
  title="Supply Failure Prediction",
95
  preview_data=preview_data,
96
+ columns=_current_df_supply.columns.tolist(),
97
  summary_stats=summary_stats)
 
98
  except Exception as e:
99
  flash(f'Error processing file: {str(e)}')
100
  return redirect(url_for('supply_failure.show_supply_failure'))
101
 
102
+
103
  @supply_failure_bp.route('/run_prediction', methods=['POST'])
104
  def run_prediction_supply():
105
+ """Trains the model and returns performance metrics."""
106
+ global _current_df_supply, _model_supply, _scaler_supply, _encoders_supply, _feature_names_supply, _target_col_supply
107
+ if _current_df_supply is None:
108
+ return jsonify({'success': False, 'error': 'No data available. Please upload a CSV file first.'})
 
 
109
 
110
+ try:
111
+ df_processed, label_encoders = preprocess_data_supply(_current_df_supply.copy())
112
+ _encoders_supply = label_encoders
 
 
113
 
114
+ if _target_col_supply not in df_processed.columns:
115
+ return jsonify({'success': False, 'error': f"Target column '{_target_col_supply}' not found after preprocessing."})
116
 
117
+ X = df_processed.drop(columns=[_target_col_supply])
118
+ y = df_processed[_target_col_supply]
119
+ _feature_names_supply = X.columns.tolist()
120
 
121
  X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
122
+
123
+ _scaler_supply = StandardScaler()
124
+ X_train_scaled = _scaler_supply.fit_transform(X_train)
125
+ X_test_scaled = _scaler_supply.transform(X_test)
126
+
127
+ _model_supply = RandomForestClassifier(random_state=42)
128
+ _model_supply.fit(X_train_scaled, y_train)
129
+ y_pred = _model_supply.predict(X_test_scaled)
130
+
131
+ importances = _model_supply.feature_importances_
132
+ feature_importance = sorted(zip(_feature_names_supply, importances), key=lambda x: x[1], reverse=True)[:5]
 
 
 
 
 
133
  top_features = [{'feature': f, 'importance': float(imp)} for f, imp in feature_importance]
134
 
 
 
 
135
  metrics = {
136
  'Accuracy': accuracy_score(y_test, y_pred),
137
  'Precision': precision_score(y_test, y_pred, average='weighted', zero_division=0),
 
139
  'F1 Score': f1_score(y_test, y_pred, average='weighted', zero_division=0)
140
  }
141
 
142
+ return jsonify({'success': True, 'metrics': metrics, 'top_features': top_features})
 
 
 
 
 
 
 
 
 
 
 
 
 
 
143
  except Exception as e:
144
+ return jsonify({'success': False, 'error': f'An error occurred: {str(e)}'})
 
145
 
146
  @supply_failure_bp.route('/get_form_data', methods=['GET'])
147
  def get_form_data_supply():
148
+ """Generates the fields for the single prediction form."""
149
+ if _current_df_supply is None:
150
+ return jsonify({'success': False, 'error': 'No data available. Please upload a file first.'})
151
+
152
+ df = _current_df_supply
153
+ exclude_cols = [
154
+ 'delivery_delay_days', 'delivered_quantity', 'return_reason',
155
+ 'delivery_status', 'failure_type', _target_col_supply, 'order_id',
156
+ 'component_id', 'po_approval_delay_days', 'customs_clearance_days',
157
+ 'actual_delivery_date'
158
+ ]
159
+ form_fields = []
160
+
161
+ for col in df.columns:
162
+ if col.lower() in [ec.lower() for ec in exclude_cols]:
163
+ continue
164
+
165
+ field_info = {'name': col}
166
+ if pd.api.types.is_numeric_dtype(df[col]):
167
+ field_info['type'] = 'number'
168
+ field_info['default_value'] = round(df[col].mean(), 2) if not df[col].empty else 0
169
+ elif col in ['order_date', 'promised_delivery_date']:
170
+ field_info['type'] = 'text'
171
+ field_info['placeholder'] = 'YYYY-MM-DD'
172
+ field_info['default_value'] = pd.to_datetime(df[col].mode()[0]).strftime('%Y-%m-%d') if not df[col].mode().empty else ''
173
+ else:
174
+ field_info['type'] = 'select'
175
+ field_info['options'] = [str(x) for x in df[col].dropna().unique().tolist()]
176
+ field_info['default_value'] = df[col].mode()[0] if not df[col].mode().empty else ''
177
+ form_fields.append(field_info)
178
+
179
+ return jsonify({'success': True, 'form_fields': form_fields})
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
180
 
181
 
182
  @supply_failure_bp.route('/predict_single', methods=['POST'])
183
  def predict_single_supply():
184
+ """Makes a prediction for a single instance of data."""
185
+ if not all([_model_supply, _scaler_supply, _encoders_supply, _feature_names_supply, _original_cols_supply]):
186
+ return jsonify({'success': False, 'error': 'Model or configuration not ready. Please run a prediction first.'})
187
+
188
  try:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
189
  input_data = request.json
190
+ input_df = pd.DataFrame([input_data], columns=_original_cols_supply)
 
 
 
 
 
 
 
 
 
 
 
 
191
 
192
+ preprocessed_df, _ = preprocess_data_supply(input_df.copy(), for_prediction=True, label_encoders=_encoders_supply)
193
 
194
+ final_features = pd.DataFrame(columns=_feature_names_supply)
195
+ final_features = pd.concat([final_features, preprocessed_df], ignore_index=True).fillna(0)
 
 
 
 
 
196
 
197
+ input_scaled = _scaler_supply.transform(final_features[_feature_names_supply])
198
 
199
+ prediction = _model_supply.predict(input_scaled)[0]
200
+ prediction_display = "Delivery Failed" if prediction == 1 else "Delivery Successful"
201
 
202
+ probability = _model_supply.predict_proba(input_scaled)[0].tolist()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
203
 
204
+ return jsonify({'success': True, 'prediction': prediction_display, 'probability': probability})
 
 
 
 
 
 
 
 
 
205
  except Exception as e:
206
+ return jsonify({'success': False, 'error': f'An error occurred during prediction: {str(e)}'})