Spaces:
Runtime error
Runtime error
from openai import OpenAI | |
import base64 | |
import requests | |
import re | |
from diffusers import DiffusionPipeline | |
import torch | |
from PIL import Image | |
import os | |
from huggingface_hub import login | |
login(token=os.environ.get("HF_token")) | |
# Modfiy this to change the number of generations | |
NUM_GEN = 3 | |
def encode_image(image_path): | |
with open(image_path, "rb") as image_file: | |
return base64.b64encode(image_file.read()).decode('utf-8') | |
def vision_gpt(prompt, image_url, api_key): | |
client = OpenAI(api_key=api_key) | |
response = client.chat.completions.create( | |
model="gpt-4-vision-preview", | |
messages=[ | |
{ | |
"role": "user", | |
"content": [ | |
{"type": "text", | |
"text": prompt}, | |
{ | |
"type": "image_url", | |
"image_url": { | |
"url": f"data:image/jpeg;base64,{image_url}", }, | |
}, | |
], | |
} | |
], | |
max_tokens=600, | |
) | |
return response.choices[0].message.content | |
def generate_images(oai_key, input_path, mistaken_class, ground_truth_class): | |
output_path = "out/" | |
num_generations = 2 | |
print("--------------input_path--------------: \n", input_path, "\n\n") | |
base64_image = encode_image(input_path) | |
prompt = """ | |
List key features of the {} itself in this image that make it distinct from a {}? Then, write a very short and | |
concise visual midjourney prompt of the {} that includes the above features of {} (prompt should start | |
with '4K SLR photo,') and put it inside square brackets []. Do no mention {} in your prompt, also do not mention | |
non-essential background scenes like "calm waters, mountains" and sub-components like "paddle of canoe" in the prompt. | |
""".format(ground_truth_class, mistaken_class, ground_truth_class, ground_truth_class, mistaken_class, mistaken_class) | |
print("--------------gpt prompt--------------: \n", prompt, "\n\n") | |
response = vision_gpt(prompt, base64_image, oai_key) | |
print("--------------GPT response--------------: \n", response, "\n\n") | |
stable_diffusion_prompt = re.search(r'\[(.*?)\]', response).group(1) | |
print("--------------stable_diffusion_prompt-------------- \n", stable_diffusion_prompt, "\n\n") | |
SD_pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-0.9", torch_dtype=torch.float16, use_safetensors=True, variant="fp16") | |
RF_pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-0.9", torch_dtype=torch.float16, use_safetensors=True, variant="fp16") | |
SD_pipe.to("cuda") | |
RF_pipe.to("cuda") | |
out_images = [] | |
for i in range(NUM_GEN): | |
generated_images = SD_pipe(prompt=stable_diffusion_prompt, num_inference_steps=75).images | |
refined_image = RF_pipe(prompt=stable_diffusion_prompt, image=generated_images).images[0] | |
refined_image = RF_pipe(prompt=stable_diffusion_prompt, image=refined_image).images[0] | |
refined_image = RF_pipe(prompt=stable_diffusion_prompt, image=refined_image).images[0] | |
# refined_image.save(output_path + "{}.png".format(i), 'PNG') | |
out_images.append(refined_image) | |
return tuple(out_images) |