certifaier / vllm /lora /layers.py
bsmit1659's picture
Adding vllm package
ca1ecab
raw
history blame
35.1 kB
# pylint: disable=unused-argument
import math
from dataclasses import dataclass
from typing import TYPE_CHECKING, List, Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import PretrainedConfig
from vllm.config import LoRAConfig
from vllm.lora.punica import add_lora, add_lora_slice, bgmv
from vllm.model_executor.layers.sampler import Sampler
from vllm.model_executor.parallel_utils.communication_op import (
tensor_model_parallel_all_gather,
tensor_model_parallel_all_reduce,
tensor_model_parallel_gather,
)
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
RowParallelLinear,
QKVParallelLinear,
MergedColumnParallelLinear)
from vllm.model_executor.layers.vocab_parallel_embedding import VocabParallelEmbedding, ParallelLMHead
from vllm.model_executor.parallel_utils.parallel_state import (
get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size)
from vllm.model_executor.parallel_utils.utils import split_tensor_along_last_dim
if TYPE_CHECKING:
pass
def _apply_lora(
x: torch.Tensor,
lora_a_stacked: torch.Tensor,
lora_b_stacked: torch.Tensor,
indices: torch.Tensor,
output: torch.Tensor,
):
"""Applies lora to each input.
This method applies all loras to each input. It uses the
indices vector to determine which lora yields the
correct output. An index of -1 means no lora should be
applied. This method adds the final lora results to the
output.
Input shapes:
x: (batch_size, hidden_dim)
lora_a_stacked: (num_loras, lora_rank, hidden_dim)
lora_b_stacked: (num_loras, output_dim, lora_rank)
indices: (batch_size)
output: (batch_size, output_dim)
"""
org_output = output
x = x.view(-1, x.shape[-1])
output = output.view(-1, output.shape[-1])
indices = indices.view(-1)
add_lora(output, x, lora_a_stacked, lora_b_stacked, indices, 0, 1.0)
return output.view_as(org_output)
def _apply_lora_packed_nslice(
x: torch.Tensor,
lora_a_stacked: Tuple[torch.Tensor, torch.Tensor, torch.Tensor],
lora_b_stacked: Tuple[torch.Tensor, torch.Tensor, torch.Tensor],
indices: torch.Tensor,
output: torch.Tensor,
output_slices: Tuple[int, ...],
):
"""Applies lora to each input.
This method applies all loras to each input. It uses the
indices vector to determine which lora yields the
correct output. An index of -1 means no lora should be
applied. This method adds the final lora results to the
output.
This method is used for layers that are composed of multiple sublayers
(slices) packed together.
Input shapes:
x: (batch_size, hidden_dim)
lora_a_stacked: 3 element tuple of (num_loras, lora_rank, hidden_dim)
lora_b_stacked: 3 element tuple of (num_loras, output_dim, lora_rank)
indices: (batch_size)
output: (batch_size, q_slice_size + 2*kv_slice_size)
output_slices: n-1 element tuple of (slice_size...), where n is number of slices
"""
org_output = output
x = x.view(-1, x.shape[-1])
output = output.view(-1, output.shape[-1])
indices = indices.view(-1)
offset_left = 0
for slice_idx in range(len(output_slices)):
add_lora_slice(output, x, lora_a_stacked[slice_idx],
lora_b_stacked[slice_idx], indices, 0, 1.0, offset_left,
output_slices[slice_idx])
offset_left += output_slices[slice_idx]
return output.view_as(org_output)
@dataclass
class LoRAMapping:
# Per every token in input_ids:
index_mapping: Tuple[int, ...]
# Per sampled token:
prompt_mapping: Tuple[int, ...]
def __post_init__(self):
self.index_mapping = tuple(self.index_mapping)
self.prompt_mapping = tuple(self.prompt_mapping)
class BaseLayerWithLoRA(nn.Module):
def create_lora_weights(self, max_loras: int, lora_config: LoRAConfig,
model_config: PretrainedConfig) -> None:
"""Initializes lora matrices."""
...
def reset_lora(self, index: int):
"""Resets the lora weights at index back to 0."""
...
def set_lora(
self,
index: int,
lora_a: torch.Tensor,
lora_b: torch.Tensor,
embeddings_tensor: Optional[torch.Tensor],
):
"""Overwrites lora tensors at index."""
...
def set_mapping(
self,
base_indices: torch.Tensor,
sampler_indices: torch.Tensor,
sampler_indices_padded: torch.Tensor,
embeddings_indices: torch.Tensor,
indices_len: List[int],
):
"""Sets the mapping indices."""
...
class VocabParallelEmbeddingWithLoRA(BaseLayerWithLoRA):
def __init__(self, base_layer: VocabParallelEmbedding) -> None:
super().__init__()
self.base_layer = base_layer
def create_lora_weights(
self,
max_loras: int,
lora_config: LoRAConfig,
model_config: Optional[PretrainedConfig] = None) -> None:
lora_vocab_start_idx = self.base_layer.org_vocab_size
weights_idx = None
if self.base_layer.vocab_end_index > lora_vocab_start_idx:
# We can start adding lora weights
weights_idx = max(
lora_vocab_start_idx - self.base_layer.vocab_start_index, 0)
self.embeddings_slice = (self.base_layer.vocab_start_index -
self.base_layer.org_vocab_size +
weights_idx,
self.base_layer.vocab_end_index -
self.base_layer.org_vocab_size)
self.embeddings_weights = self.base_layer.weight.data[weights_idx:]
self.embeddings_weights.fill_(0)
else:
self.embeddings_slice = None
self.embeddings_weights = None
self.embeddings_tensors = torch.zeros(
(
max_loras,
lora_config.lora_extra_vocab_size,
self.base_layer.embedding_dim,
),
dtype=self.base_layer.weight.dtype,
device=self.base_layer.weight.device,
)
self.lora_a_stacked = torch.zeros(
(
max_loras,
self.base_layer.org_vocab_size +
lora_config.lora_extra_vocab_size,
lora_config.max_lora_rank,
),
dtype=lora_config.lora_dtype,
device=self.base_layer.weight.device,
)
self.lora_b_stacked = torch.zeros(
(
max_loras,
1,
self.base_layer.embedding_dim,
lora_config.max_lora_rank,
),
dtype=lora_config.lora_dtype,
device=self.base_layer.weight.device,
)
self.lora_a_stacked_2d = self.lora_a_stacked.view(
self.lora_a_stacked.shape[0] * self.lora_a_stacked.shape[1],
self.lora_a_stacked.shape[2],
)
self.indices: Optional[torch.Tensor] = None
self.indices_len: Optional[List[int]] = None
self.embeddings_indices = None
def reset_lora(self, index: int):
self.lora_a_stacked[index] = 0
self.lora_b_stacked[index] = 0
self.embeddings_tensors[index] = 0
def set_lora(
self,
index: int,
lora_a: torch.Tensor,
lora_b: torch.Tensor,
embeddings_tensor: Optional[torch.Tensor],
):
self.reset_lora(index)
self.lora_a_stacked[index, :lora_a.shape[0], :lora_a.shape[1]].copy_(
lora_a, non_blocking=True)
self.lora_b_stacked[index,
0, :lora_b.shape[1], :lora_b.shape[0]].copy_(
lora_b.T, non_blocking=True)
if embeddings_tensor is not None:
self.embeddings_tensors[
index, :embeddings_tensor.shape[0], :embeddings_tensor.
shape[1]].copy_(embeddings_tensor, non_blocking=True)
if self.embeddings_slice is not None:
# TODO(yard1): Optimize this copy, we don't need to copy
# everything, just the modified part
embeddings = self.embeddings_tensors.view(
self.embeddings_tensors.shape[0] *
self.embeddings_tensors.shape[1],
self.embeddings_tensors.shape[2]
)[self.embeddings_slice[0]:self.embeddings_slice[1]]
self.embeddings_weights[:embeddings.shape[0]].copy_(embeddings)
def set_mapping(
self,
base_indices: torch.Tensor,
sampler_indices: torch.Tensor,
sampler_indices_padded: torch.Tensor,
embeddings_indices: torch.Tensor,
indices_len: List[int],
):
self.indices = base_indices
self.embeddings_indices = embeddings_indices
self.indices_len = indices_len
def forward(self, x: torch.Tensor) -> torch.Tensor:
added_tokens_mask = x > self.base_layer.org_vocab_size - 1
indices = self.embeddings_indices[1][:self.indices_len[3]].view_as(x)
full_lora_a_embeddings = F.embedding(
x + indices,
self.lora_a_stacked_2d,
)
indices = self.embeddings_indices[0][:self.indices_len[3]].view_as(x)
full_output = self.base_layer.forward(
x.add_(indices * added_tokens_mask))
full_output_org = full_output
if full_output.ndim == 3:
full_output = full_output.view(
full_output.shape[0] * full_output.shape[1], -1)
if full_lora_a_embeddings.ndim == 3:
full_lora_a_embeddings = full_lora_a_embeddings.view(
full_lora_a_embeddings.shape[0] *
full_lora_a_embeddings.shape[1], -1)
bgmv(full_output, full_lora_a_embeddings, self.lora_b_stacked,
self.indices[:self.indices_len[0]], 0, 1.0)
return full_output.view_as(full_output_org)
class ColumnParallelLinearWithLoRA(BaseLayerWithLoRA):
def __init__(self, base_layer: ColumnParallelLinear) -> None:
super().__init__()
self.base_layer = base_layer
def create_lora_weights(
self,
max_loras: int,
lora_config: LoRAConfig,
model_config: Optional[PretrainedConfig] = None) -> None:
self.lora_a_stacked = torch.zeros(
max_loras,
1,
lora_config.max_lora_rank,
self.base_layer.weight.shape[1],
dtype=lora_config.lora_dtype,
device=self.base_layer.weight.device,
)
self.lora_b_stacked = torch.zeros(
max_loras,
1,
self.base_layer.weight.shape[0],
lora_config.max_lora_rank,
dtype=lora_config.lora_dtype,
device=self.base_layer.weight.device,
)
self.indices: Optional[torch.Tensor] = None
self.indices_len: Optional[List[int]] = None
self.output_dim = self.lora_b_stacked.shape[1]
def reset_lora(self, index: int):
self.lora_a_stacked[index] = 0
self.lora_b_stacked[index] = 0
def set_lora(
self,
index: int,
lora_a: torch.Tensor,
lora_b: torch.Tensor,
embeddings_tensor: Optional[torch.Tensor],
):
self.reset_lora(index)
self.lora_a_stacked[index,
0, :lora_a.shape[1], :lora_a.shape[0]].copy_(
lora_a.T, non_blocking=True)
self.lora_b_stacked[index,
0, :lora_b.shape[1], :lora_b.shape[0]].copy_(
lora_b.T, non_blocking=True)
def set_mapping(
self,
base_indices: torch.Tensor,
sampler_indices: torch.Tensor,
sampler_indices_padded: torch.Tensor,
embeddings_indices: torch.Tensor,
indices_len: List[int],
):
self.indices = base_indices
self.indices_len = indices_len
def apply_weights(self, x: torch.Tensor,
bias: Optional[torch.Tensor]) -> torch.Tensor:
output = self.base_layer.linear_method.apply_weights(
self.base_layer.linear_weights, x, bias)
_apply_lora(
x,
self.lora_a_stacked,
self.lora_b_stacked,
self.indices[:self.indices_len[0]],
output,
)
return output
def forward(self, input_):
"""Forward of ColumnParallelLinear
Args:
input_: Tensor whose last dimension is `input_size`.
Returns:
- output
- bias
"""
bias = (self.base_layer.bias
if not self.base_layer.skip_bias_add else None)
# Matrix multiply.
output_parallel = self.apply_weights(input_, bias)
if self.base_layer.gather_output:
# All-gather across the partitions.
output = tensor_model_parallel_all_gather(output_parallel)
else:
output = output_parallel
output_bias = (self.base_layer.bias
if self.base_layer.skip_bias_add else None)
return output, output_bias
@property
def linear_weights(self):
return self.base_layer.linear_weights
class MergedColumnParallelLinearWithLoRA(ColumnParallelLinearWithLoRA):
"""ColumnParallelLinear layer that is composed of 2 sublayers (slices)
packed together (eg. gate_proj + up_proj -> gate_up_proj).
This means we have 2 LoRAs, each applied to one half of the layer.
Both slices must have the same size.
"""
def __init__(self, base_layer: MergedColumnParallelLinear) -> None:
super().__init__(base_layer)
def create_lora_weights(
self,
max_loras: int,
lora_config: LoRAConfig,
model_config: Optional[PretrainedConfig] = None) -> None:
n_slices = 2
if not (len(self.base_layer.output_sizes) == n_slices
and self.base_layer.output_sizes[0]
== self.base_layer.output_sizes[1]):
raise ValueError(
"LoRAColumnParallelLinear2Slice requires 2 slices with "
"the same size.")
self.tp_size = get_tensor_model_parallel_world_size()
self.lora_a_stacked = tuple(
torch.zeros(
max_loras,
1,
lora_config.max_lora_rank,
self.base_layer.weight.shape[1],
dtype=lora_config.lora_dtype,
device=self.base_layer.weight.device,
) for _ in range(n_slices))
self.lora_b_stacked = tuple(
torch.zeros(
max_loras,
1,
self.base_layer.weight.shape[0] // 2,
lora_config.max_lora_rank,
dtype=lora_config.lora_dtype,
device=self.base_layer.weight.device,
) for _ in range(n_slices))
self.indices: Optional[torch.Tensor] = None
self.output_dim = self.lora_b_stacked[0].shape[2]
def reset_lora(self, index: int):
self.lora_a_stacked[0][index] = 0
self.lora_a_stacked[1][index] = 0
self.lora_b_stacked[0][index] = 0
self.lora_b_stacked[1][index] = 0
def set_lora(
self,
index: int,
lora_a: torch.Tensor,
lora_b: torch.Tensor,
embeddings_tensor: Optional[torch.Tensor],
):
self.reset_lora(index)
if self.tp_size > 1:
tensor_model_parallel_rank = get_tensor_model_parallel_rank()
shard_size = self.output_dim
start_idx = tensor_model_parallel_rank * shard_size
end_idx = (tensor_model_parallel_rank + 1) * shard_size
lora_b = lora_b[0][:,
start_idx:end_idx], lora_b[1][:,
start_idx:end_idx]
if lora_a[0] is not None:
self.lora_a_stacked[0][
index, 0, :lora_a[0].shape[1], :lora_a[0].shape[0]].copy_(
lora_a[0].T, non_blocking=True)
self.lora_b_stacked[0][
index, 0, :lora_b[0].shape[1], :lora_b[0].shape[0]].copy_(
lora_b[0].T, non_blocking=True)
if lora_a[1] is not None:
self.lora_a_stacked[1][
index, 0, :lora_a[1].shape[1], :lora_a[1].shape[0]].copy_(
lora_a[1].T, non_blocking=True)
self.lora_b_stacked[1][
index, 0, :lora_b[1].shape[1], :lora_b[1].shape[0]].copy_(
lora_b[1].T, non_blocking=True)
def apply_weights(self, x: torch.Tensor,
bias: Optional[torch.Tensor]) -> torch.Tensor:
output = self.base_layer.linear_method.apply_weights(
self.base_layer.linear_weights, x, bias)
_apply_lora_packed_nslice(
x,
self.lora_a_stacked,
self.lora_b_stacked,
self.indices[:self.indices_len[0]],
output,
(self.output_dim, self.output_dim),
)
return output
class QKVParallelLinearWithLora(ColumnParallelLinearWithLoRA):
"""ColumnParallelLinear layer that is composed of 3 sublayers (slices)
packed together in qkv proj fashion
(q_proj + k_proj + v_proj -> qkv_proj).
This means we have 3 LoRAs, each applied to one slice of the layer.
Q slice may have different shape than K and V slices (which both have
the same shape).
"""
def __init__(self, base_layer: QKVParallelLinear) -> None:
super().__init__(base_layer)
def create_lora_weights(
self,
max_loras: int,
lora_config: LoRAConfig,
model_config: Optional[PretrainedConfig] = None) -> None:
self.tp_size = get_tensor_model_parallel_world_size()
tp_rank = get_tensor_model_parallel_rank()
self.q_proj_shard_size = (self.base_layer.num_heads *
self.base_layer.head_size)
self.kv_proj_shard_size = (self.base_layer.num_kv_heads *
self.base_layer.head_size)
self.q_shard_id = tp_rank
self.kv_shard_id = tp_rank // self.base_layer.num_kv_head_replicas
# q, k, v
self.lora_a_stacked = (
torch.zeros(
max_loras,
1,
lora_config.max_lora_rank,
self.base_layer.weight.shape[1],
dtype=lora_config.lora_dtype,
device=self.base_layer.weight.device,
),
torch.zeros(
max_loras,
1,
lora_config.max_lora_rank,
self.base_layer.weight.shape[1],
dtype=lora_config.lora_dtype,
device=self.base_layer.weight.device,
),
torch.zeros(
max_loras,
1,
lora_config.max_lora_rank,
self.base_layer.weight.shape[1],
dtype=lora_config.lora_dtype,
device=self.base_layer.weight.device,
),
)
self.lora_b_stacked = (
torch.zeros(
max_loras,
1,
self.q_proj_shard_size,
lora_config.max_lora_rank,
dtype=lora_config.lora_dtype,
device=self.base_layer.weight.device,
),
torch.zeros(
max_loras,
1,
self.kv_proj_shard_size,
lora_config.max_lora_rank,
dtype=lora_config.lora_dtype,
device=self.base_layer.weight.device,
),
torch.zeros(
max_loras,
1,
self.kv_proj_shard_size,
lora_config.max_lora_rank,
dtype=lora_config.lora_dtype,
device=self.base_layer.weight.device,
),
)
self.output_slices = (self.q_proj_shard_size, self.kv_proj_shard_size,
self.kv_proj_shard_size)
self.packed_indices: Optional[torch.Tensor] = None
self.standard_indices: Optional[torch.Tensor] = None
self.indices_len: Optional[List[int]] = None
def reset_lora(self, index: int):
self.lora_a_stacked[0][index] = 0
self.lora_b_stacked[0][index] = 0
self.lora_a_stacked[1][index] = 0
self.lora_b_stacked[1][index] = 0
self.lora_a_stacked[2][index] = 0
self.lora_b_stacked[2][index] = 0
def set_lora(
self,
index: int,
lora_a: torch.Tensor,
lora_b: torch.Tensor,
embeddings_tensor: Optional[torch.Tensor],
):
self.reset_lora(index)
if self.tp_size > 1:
if lora_b[0] is not None:
lora_b_q = lora_b[0][:, self.q_proj_shard_size *
self.q_shard_id:self.q_proj_shard_size *
(self.q_shard_id + 1)]
self.lora_b_stacked[0][
index, 0, :lora_b_q.shape[1], :lora_b_q.shape[0]].copy_(
lora_b_q.T, non_blocking=True)
if lora_b[1] is not None:
lora_b_k = lora_b[1][:, self.kv_proj_shard_size *
self.kv_shard_id:self.kv_proj_shard_size *
(self.kv_shard_id + 1)]
self.lora_b_stacked[1][
index, 0, :lora_b_k.shape[1], :lora_b_k.shape[0]].copy_(
lora_b_k.T, non_blocking=True)
if lora_b[2] is not None:
lora_b_v = lora_b[2][:, self.kv_proj_shard_size *
self.kv_shard_id:self.kv_proj_shard_size *
(self.kv_shard_id + 1)]
self.lora_b_stacked[2][
index, 0, :lora_b_v.shape[1], :lora_b_v.shape[0]].copy_(
lora_b_v.T, non_blocking=True)
else:
if lora_b[0] is not None:
self.lora_b_stacked[0][
index, 0, :lora_b[0].shape[1], :lora_b[0].shape[0]].copy_(
lora_b[0].T, non_blocking=True)
if lora_b[1] is not None:
self.lora_b_stacked[1][
index, 0, :lora_b[1].shape[1], :lora_b[1].shape[0]].copy_(
lora_b[1].T, non_blocking=True)
if lora_b[2] is not None:
self.lora_b_stacked[2][
index, 0, :lora_b[2].shape[1], :lora_b[2].shape[0]].copy_(
lora_b[2].T, non_blocking=True)
if lora_a[0] is not None:
self.lora_a_stacked[0][
index, 0, :lora_a[0].shape[1], :lora_a[0].shape[0]].copy_(
lora_a[0].T, non_blocking=True)
if lora_a[1] is not None:
self.lora_a_stacked[1][
index, 0, :lora_a[1].shape[1], :lora_a[1].shape[0]].copy_(
lora_a[1].T, non_blocking=True)
if lora_a[2] is not None:
self.lora_a_stacked[2][
index, 0, :lora_a[2].shape[1], :lora_a[2].shape[0]].copy_(
lora_a[2].T, non_blocking=True)
def apply_weights(self, x: torch.Tensor,
bias: Optional[torch.Tensor]) -> torch.Tensor:
output = self.base_layer.linear_method.apply_weights(
self.base_layer.linear_weights, x, bias)
_apply_lora_packed_nslice(
x,
self.lora_a_stacked,
self.lora_b_stacked,
self.indices[:self.indices_len[0]],
output,
self.output_slices,
)
return output
class RowParallelLinearWithLoRA(BaseLayerWithLoRA):
def __init__(self, base_layer: RowParallelLinear) -> None:
super().__init__()
self.base_layer = base_layer
def create_lora_weights(
self,
max_loras: int,
lora_config: LoRAConfig,
model_config: Optional[PretrainedConfig] = None) -> None:
self.lora_a_stacked = torch.zeros(
(
max_loras,
1,
lora_config.max_lora_rank,
self.base_layer.weight.shape[1],
),
dtype=lora_config.lora_dtype,
device=self.base_layer.weight.device,
)
self.lora_b_stacked = torch.zeros(
(
max_loras,
1,
self.base_layer.weight.shape[0],
lora_config.max_lora_rank,
),
dtype=lora_config.lora_dtype,
device=self.base_layer.weight.device,
)
self.indices: Optional[torch.Tensor] = None
self.indices_len: Optional[List[int]] = None
def reset_lora(self, index: int):
self.lora_a_stacked[index] = 0
self.lora_b_stacked[index] = 0
def set_lora(
self,
index: int,
lora_a: torch.Tensor,
lora_b: torch.Tensor,
embeddings_tensor: Optional[torch.Tensor],
):
self.reset_lora(index)
if self.base_layer.tp_size > 1:
tensor_model_parallel_rank = get_tensor_model_parallel_rank()
shard_size = self.base_layer.weight.shape[1]
start_idx = tensor_model_parallel_rank * shard_size
end_idx = (tensor_model_parallel_rank + 1) * shard_size
lora_a = lora_a[start_idx:end_idx, :]
self.lora_a_stacked[index,
0, :lora_a.shape[1], :lora_a.shape[0]].copy_(
lora_a.T, non_blocking=True)
self.lora_b_stacked[index,
0, :lora_b.shape[1], :lora_b.shape[0]].copy_(
lora_b.T, non_blocking=True)
def set_mapping(
self,
base_indices: torch.Tensor,
sampler_indices: torch.Tensor,
sampler_indices_padded: torch.Tensor,
embeddings_indices: torch.Tensor,
indices_len: List[int],
):
self.indices = base_indices
self.indices_len = indices_len
def apply_weights(self, x: torch.Tensor) -> torch.Tensor:
output = self.base_layer.linear_method.apply_weights(
self.base_layer.linear_weights, x)
_apply_lora(
x,
self.lora_a_stacked,
self.lora_b_stacked,
self.indices[:self.indices_len[0]],
output,
)
return output
def forward(self, input_):
"""Forward of RowParallelLinear
Args:
input_: tensor whose last dimension is `input_size`. If
`input_is_parallel` is set, then the last dimension
is `input_size // tp_size`.
Returns:
- output
- bias
"""
# Set up backprop all-reduce.
if self.base_layer.input_is_parallel:
input_parallel = input_
else:
# TODO: simplify code below
tp_rank = get_tensor_model_parallel_rank()
splitted_input = split_tensor_along_last_dim(
input_, num_partitions=self.base_layer.tp_size)
input_parallel = splitted_input[tp_rank].contiguous()
# Matrix multiply.
output_parallel = self.apply_weights(input_parallel)
if self.base_layer.reduce_results and self.base_layer.tp_size > 1:
output_ = tensor_model_parallel_all_reduce(output_parallel)
else:
output_ = output_parallel
if not self.base_layer.skip_bias_add:
output = (output_ + self.base_layer.bias
if self.base_layer.bias is not None else output_)
output_bias = None
else:
output = output_
output_bias = self.base_layer.bias
return output, output_bias
@property
def weight(self):
return self.base_layer.weight
class SamplerWithLoRA(BaseLayerWithLoRA):
def __init__(
self,
base_layer: Sampler,
hidden_size: int,
dtype: torch.dtype,
device: torch.device,
) -> None:
super().__init__()
self.base_layer = base_layer
self.hidden_size = hidden_size
self.dtype = dtype
self.device = device
@property
def vocab_size(self):
return self.base_layer.vocab_size
@property
def org_vocab_size(self):
return self.base_layer.org_vocab_size
@property
def include_gpu_probs_tensor(self):
return self.base_layer.include_gpu_probs_tensor
def create_lora_weights(
self,
max_loras: int,
lora_config: LoRAConfig,
model_config: Optional[PretrainedConfig] = None,
) -> None:
# Keep this in sync with csrc/punica/bgmv/bgmv_config.h
if 32000 < self.base_layer.vocab_size > 33024:
raise ValueError(
"When using LoRA, vocab size must be 32000 >= vocab_size <= 33024"
)
self.lora_a_stacked = torch.zeros(
(
max_loras,
1,
lora_config.max_lora_rank,
self.hidden_size,
),
dtype=lora_config.lora_dtype,
device=self.device,
)
self.lora_b_stacked = torch.zeros(
(
max_loras,
1,
# Pad for kernel compatibility
math.ceil(self.base_layer.vocab_size /
lora_config.lora_vocab_padding_size) *
lora_config.lora_vocab_padding_size,
lora_config.max_lora_rank,
),
dtype=lora_config.lora_dtype,
device=self.device,
)
self.embeddings_tensors = torch.full(
(max_loras, lora_config.lora_extra_vocab_size, self.hidden_size),
fill_value=float("-inf"),
dtype=self.dtype,
device=self.device,
)
self.indices = None
self.indices_padded = None
self.indices_len = None
def reset_lora(self, index: int):
self.lora_a_stacked[index] = 0
self.lora_b_stacked[index] = 0
self.embeddings_tensors[index] = float("-inf")
def set_lora(
self,
index: int,
lora_a: torch.Tensor,
lora_b: torch.Tensor,
embeddings_tensor: Optional[torch.Tensor],
):
self.reset_lora(index)
self.lora_a_stacked[index,
0, :lora_a.shape[1], :lora_a.shape[0]].copy_(
lora_a.T, non_blocking=True)
self.lora_b_stacked[index,
0, :lora_b.shape[1], :lora_b.shape[0]].copy_(
lora_b.T, non_blocking=True)
if embeddings_tensor is not None:
self.embeddings_tensors[
index, :embeddings_tensor.shape[0], :embeddings_tensor.
shape[1], ] = embeddings_tensor
def set_mapping(
self,
base_indices: torch.Tensor,
sampler_indices: torch.Tensor,
sampler_indices_padded: torch.Tensor,
embeddings_indices: torch.Tensor,
indices_len: List[int],
):
self.indices = sampler_indices
self.indices_padded = sampler_indices_padded
self.indices_len = indices_len
def _get_logits(
self,
hidden_states: torch.Tensor,
embedding: torch.Tensor,
embedding_bias: Optional[torch.Tensor] = None,
) -> torch.Tensor:
# Get the logits for the next tokens.
logits = torch.matmul(hidden_states, embedding.t())
if embedding_bias is not None:
logits += embedding_bias
logits = tensor_model_parallel_gather(logits)
if logits is None:
return None
lora_logits = torch.empty(
self.embeddings_tensors.shape[0] + 1,
self.embeddings_tensors.shape[1],
hidden_states.shape[0],
dtype=self.embeddings_tensors.dtype,
device=self.embeddings_tensors.device,
)
torch.matmul(self.embeddings_tensors,
hidden_states.T,
out=lora_logits[:-1])
lora_logits[-1] = float("-inf")
lora_logits = lora_logits.mT
lora_logits = (lora_logits.reshape(
lora_logits.shape[0] * lora_logits.shape[1],
lora_logits.shape[2],
).index_select(0,
self.indices_padded[:self.indices_len[2]]).nan_to_num_(
nan=float("-inf"),
posinf=float("inf"),
neginf=float("-inf")))
logits[:,
self.base_layer.org_vocab_size:self.base_layer.org_vocab_size +
lora_logits.shape[1]] = lora_logits
_apply_lora(
hidden_states,
self.lora_a_stacked,
self.lora_b_stacked,
self.indices[:self.indices_len[1]],
logits,
)
# Remove paddings in vocab (if any).
logits = logits[:, :self.base_layer.vocab_size]
return logits
def forward(self, *args, **kwargs):
return type(self.base_layer).forward(self, *args, **kwargs)
def from_layer(
layer: nn.Module,
max_loras: int,
lora_config: LoRAConfig,
model_config: Optional[PretrainedConfig] = None) -> BaseLayerWithLoRA:
supported_layer_types = {
VocabParallelEmbedding: VocabParallelEmbeddingWithLoRA,
ColumnParallelLinear: ColumnParallelLinearWithLoRA,
QKVParallelLinear: QKVParallelLinearWithLora,
MergedColumnParallelLinear: MergedColumnParallelLinearWithLoRA,
RowParallelLinear: RowParallelLinearWithLoRA,
}
for src_layer_type, lora_layer_type in supported_layer_types.items():
if type(layer) is src_layer_type: # pylint: disable=unidiomatic-typecheck
ret = lora_layer_type(layer)
ret.create_lora_weights(max_loras, lora_config, model_config)
return ret
return layer
def from_layer_sampler(
layer: Sampler,
lm_head: ParallelLMHead,
max_loras: int,
lora_config: LoRAConfig,
model_config: Optional[PretrainedConfig] = None,
) -> SamplerWithLoRA:
ret = SamplerWithLoRA(layer, lm_head.embedding_dim, lm_head.weight.dtype,
lm_head.weight.device)
ret.create_lora_weights(max_loras, lora_config, model_config)
return ret