Spaces:
Sleeping
Sleeping
"""Custom activation functions.""" | |
import math | |
from typing import Optional | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from vllm._C import ops | |
from vllm.model_executor.layers.quantization import QuantizationConfig | |
from vllm.model_executor.parallel_utils.parallel_state import ( | |
get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size) | |
from vllm.model_executor.parallel_utils.utils import divide | |
from vllm.model_executor.utils import set_weight_attrs | |
class SiluAndMul(nn.Module): | |
"""An activation function for SwiGLU. | |
The function computes x -> silu(x[:d]) * x[d:] where d = x.shape[-1] // 2. | |
Shapes: | |
x: (batch_size, seq_len, 2 * d) or (num_tokens, 2 * d) | |
return: (batch_size, seq_len, d) or (num_tokens, d) | |
""" | |
def _forward(self, x: torch.Tensor) -> torch.Tensor: | |
"""PyTorch-native implementation equivalent to forward().""" | |
d = x.shape[-1] // 2 | |
return F.silu(x[..., :d]) * x[..., d:] | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
d = x.shape[-1] // 2 | |
output_shape = (x.shape[:-1] + (d, )) | |
out = torch.empty(output_shape, dtype=x.dtype, device=x.device) | |
ops.silu_and_mul(out, x) | |
return out | |
class NewGELU(nn.Module): | |
def _forward(self, x: torch.Tensor) -> torch.Tensor: | |
"""PyTorch-native implementation equivalent to forward().""" | |
c = math.sqrt(2.0 / math.pi) | |
return 0.5 * x * (1.0 + torch.tanh(c * | |
(x + 0.044715 * torch.pow(x, 3.0)))) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
out = torch.empty_like(x) | |
ops.gelu_new(out, x) | |
return out | |
class FastGELU(nn.Module): | |
def _forward(self, x: torch.Tensor) -> torch.Tensor: | |
"""PyTorch-native implementation equivalent to forward().""" | |
return 0.5 * x * (1.0 + torch.tanh(x * 0.7978845608 * | |
(1.0 + 0.044715 * x * x))) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
out = torch.empty_like(x) | |
ops.gelu_fast(out, x) | |
return out | |
class ScaledActivation(nn.Module): | |
"""An activation function with post-scale parameters. | |
This is used for some quantization methods like AWQ. | |
""" | |
def __init__( | |
self, | |
act_module: nn.Module, | |
intermediate_size: int, | |
input_is_parallel: bool = True, | |
params_dtype: Optional[torch.dtype] = None, | |
): | |
super().__init__() | |
self.act = act_module | |
self.input_is_parallel = input_is_parallel | |
if input_is_parallel: | |
tp_size = get_tensor_model_parallel_world_size() | |
intermediate_size_per_partition = divide(intermediate_size, | |
tp_size) | |
else: | |
intermediate_size_per_partition = intermediate_size | |
if params_dtype is None: | |
params_dtype = torch.get_default_dtype() | |
self.scales = nn.Parameter( | |
torch.empty(intermediate_size_per_partition, | |
dtype=params_dtype, | |
device="cuda")) | |
set_weight_attrs(self.scales, {"weight_loader": self.weight_loader}) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
return self.act(x) / self.scales | |
def weight_loader(self, param: nn.Parameter, loaded_weight: torch.Tensor): | |
param_data = param.data | |
if self.input_is_parallel: | |
tp_rank = get_tensor_model_parallel_rank() | |
shard_size = param_data.shape[0] | |
start_idx = tp_rank * shard_size | |
loaded_weight = loaded_weight.narrow(0, start_idx, shard_size) | |
assert param_data.shape == loaded_weight.shape | |
param_data.copy_(loaded_weight) | |
_ACTIVATION_REGISTRY = { | |
"gelu": nn.GELU(), | |
"gelu_fast": FastGELU(), | |
"gelu_new": NewGELU(), | |
"gelu_pytorch_tanh": nn.GELU(approximate="tanh"), | |
"relu": nn.ReLU(), | |
} | |
def get_act_fn( | |
act_fn_name: str, | |
quant_config: Optional[QuantizationConfig] = None, | |
intermediate_size: Optional[int] = None, | |
input_is_parallel: bool = True, | |
params_dtype: Optional[torch.dtype] = None, | |
) -> nn.Module: | |
"""Get an activation function by name.""" | |
act_fn_name = act_fn_name.lower() | |
if act_fn_name not in _ACTIVATION_REGISTRY: | |
raise ValueError( | |
f"Activation function {act_fn_name!r} is not supported.") | |
act_fn = _ACTIVATION_REGISTRY[act_fn_name] | |
if (quant_config is not None | |
and act_fn_name in quant_config.get_scaled_act_names()): | |
if intermediate_size is None: | |
raise ValueError("intermediate_size must be specified for scaled " | |
"activation functions.") | |
return ScaledActivation(act_fn, intermediate_size, input_is_parallel, | |
params_dtype) | |
return act_fn | |