bsmit1659's picture
Adding vllm package
ca1ecab
raw
history blame
7.41 kB
import enum
from enum import Enum
from typing import Any, Dict, List, Optional
import torch
from torch.nn.parameter import Parameter
from vllm._C import ops
from vllm.model_executor.layers.linear import (LinearMethodBase,
set_weight_attrs)
from vllm.model_executor.layers.quantization.base_config import (
QuantizationConfig)
class GPTQConfig(QuantizationConfig):
"""Config class for GPTQ.
Reference: https://arxiv.org/abs/2210.17323
"""
def __init__(
self,
weight_bits: int,
group_size: int,
desc_act: bool,
) -> None:
self.weight_bits = weight_bits
self.group_size = group_size
self.desc_act = desc_act
self.pack_factor = 32 // self.weight_bits
# exllama kernel v1 only supports 4 bit
if self.weight_bits != 4:
raise ValueError(
"Currently, only 4-bit weight quantization is supported for "
f"GPTQ, but got {self.weight_bits} bits.")
def __repr__(self) -> str:
return (f"GPTQConfig(weight_bits={self.weight_bits}, "
f"group_size={self.group_size}, "
f"desc_act={self.desc_act})")
@classmethod
def get_name(cls) -> str:
return "gptq"
@classmethod
def get_supported_act_dtypes(cls) -> List[torch.dtype]:
return [torch.half]
@classmethod
# Need to figure it out
def get_min_capability(cls) -> int:
return 60
@classmethod
def get_config_filenames(cls) -> List[str]:
return ["quantize_config.json"]
@classmethod
def from_config(cls, config: Dict[str, Any]) -> "GPTQConfig":
weight_bits = cls.get_from_keys(config, ["bits"])
group_size = cls.get_from_keys(config, ["group_size"])
desc_act = cls.get_from_keys(config, ["desc_act"])
return cls(weight_bits, group_size, desc_act)
def get_linear_method(self) -> "GPTQLinearMethod":
return GPTQLinearMethod(self)
def get_scaled_act_names(self) -> List[str]:
return []
class ExllamaState(Enum):
UNUSED = enum.auto()
UNINITIALIZED = enum.auto()
READY = enum.auto()
class GPTQLinearMethod(LinearMethodBase):
"""Linear method for GPTQ.
Args:
quant_config: The GPTQ quantization config.
"""
def __init__(self, quant_config: GPTQConfig):
self.quant_config = quant_config
def create_weights(
self,
input_size_per_partition: int,
output_size_per_partition: int,
input_size: int,
output_size: int,
params_dtype: torch.dtype,
) -> Dict[str, Any]:
del output_size # Unused.
if input_size_per_partition % self.quant_config.group_size != 0:
raise ValueError(
"The input size is not aligned with the quantized "
"weight shape. This can be caused by too large "
"tensor parallel size.")
if output_size_per_partition % self.quant_config.pack_factor != 0:
raise ValueError(
"The output size is not aligned with the quantized "
"weight shape. This can be caused by too large "
"tensor parallel size.")
if self.quant_config.group_size != -1:
group_size = self.quant_config.group_size
else:
group_size = input_size
exllama_state = ExllamaState.UNINITIALIZED
scale_and_zero_size = input_size // group_size
scale_and_zero_input_dim = None
if input_size != input_size_per_partition and self.quant_config.group_size != -1:
# For act-order models, we cannot use Exllama for row parallel layer
if self.quant_config.desc_act:
exllama_state = ExllamaState.UNUSED
else:
# we need to partition qzeros and scales for exllama kernel
scale_and_zero_size = input_size_per_partition // group_size
scale_and_zero_input_dim = 0
qweight = Parameter(
torch.empty(
input_size_per_partition // self.quant_config.pack_factor,
output_size_per_partition,
device="cuda",
dtype=torch.int32,
),
requires_grad=False,
)
set_weight_attrs(
qweight, {
"input_dim": 0,
"output_dim": 1,
"packed_dim": 0,
"pack_factor": self.quant_config.pack_factor,
})
g_idx = Parameter(
torch.tensor(
[
i // self.quant_config.group_size
for i in range(input_size_per_partition)
],
device="cuda",
dtype=torch.int32,
),
requires_grad=False,
)
# Ignore warning from fused linear layers such as QKVParallelLinear.
set_weight_attrs(g_idx, {"input_dim": 0, "ignore_warning": True})
qzeros = Parameter(
torch.empty(
scale_and_zero_size,
output_size_per_partition // self.quant_config.pack_factor,
device="cuda",
dtype=torch.int32,
),
requires_grad=False,
)
set_weight_attrs(
qzeros, {
"input_dim": scale_and_zero_input_dim,
"output_dim": 1,
"packed_dim": 1,
"pack_factor": self.quant_config.pack_factor,
})
scales = Parameter(
torch.empty(
scale_and_zero_size,
output_size_per_partition,
device="cuda",
dtype=params_dtype,
),
requires_grad=False,
)
set_weight_attrs(scales, {
"input_dim": scale_and_zero_input_dim,
"output_dim": 1,
})
return {
"qweight": qweight,
"g_idx": g_idx,
"qzeros": qzeros,
"scales": scales,
"exllama_state": exllama_state,
}
def apply_weights(self,
weights: Dict[str, Any],
x: torch.Tensor,
bias: Optional[torch.Tensor] = None) -> torch.Tensor:
qweight = weights["qweight"]
out_shape = x.shape[:-1] + (qweight.shape[-1], )
reshaped_x = x.reshape(-1, x.shape[-1])
# exllama needs to shuffle the weight after the weight is loaded
# here we do the shuffle on first forward pass
if weights["exllama_state"] == ExllamaState.UNINITIALIZED:
if self.quant_config.desc_act:
weights["g_idx"] = torch.argsort(weights["g_idx"]).to(
torch.int)
else:
weights["g_idx"] = torch.empty((1, 1), device="meta")
weights["exllama_state"] = ExllamaState.READY
ops.gptq_shuffle(weights["qweight"], weights["g_idx"])
output = ops.gptq_gemm(reshaped_x, weights["qweight"],
weights["qzeros"], weights["scales"],
weights["g_idx"],
weights["exllama_state"] == ExllamaState.READY)
if bias is not None:
output = output + bias
return output.reshape(out_shape)