Spaces:
Sleeping
Sleeping
# coding=utf-8 | |
# Adapted from | |
# https://github.com/huggingface/transformers/blob/a5cc30d72ae2dc19af534e4b35c986cc28db1275/src/transformers/models/falcon/modeling_falcon.py | |
# Copyright 2023 The vLLM team. | |
# Copyright 2023 the Falcon authors and HuggingFace Inc. team. All rights | |
# reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""PyTorch Falcon model.""" | |
import math | |
from typing import List, Optional, Tuple, Union | |
import torch | |
from torch import nn | |
from torch.nn import LayerNorm | |
from transformers import FalconConfig as HF_FalconConfig | |
from vllm.model_executor.input_metadata import InputMetadata | |
from vllm.model_executor.layers.activation import get_act_fn | |
from vllm.model_executor.layers.attention import PagedAttention | |
from vllm.model_executor.layers.linear import (ColumnParallelLinear, | |
LinearMethodBase, | |
QKVParallelLinear, | |
RowParallelLinear) | |
from vllm.model_executor.layers.rotary_embedding import get_rope | |
from vllm.model_executor.layers.sampler import Sampler | |
from vllm.model_executor.layers.vocab_parallel_embedding import ( | |
VocabParallelEmbedding, ParallelLMHead) | |
from vllm.model_executor.parallel_utils.communication_op import ( | |
tensor_model_parallel_all_reduce) | |
from vllm.model_executor.parallel_utils.parallel_state import ( | |
get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size) | |
from vllm.model_executor.sampling_metadata import SamplingMetadata | |
from vllm.model_executor.weight_utils import (default_weight_loader, | |
hf_model_weights_iterator) | |
from vllm.sequence import SamplerOutput | |
from vllm.transformers_utils.configs import RWConfig | |
KVCache = Tuple[torch.Tensor, torch.Tensor] | |
FalconConfig = Union[HF_FalconConfig, RWConfig] | |
def _get_alibi_slopes(total_num_heads: int) -> torch.Tensor: | |
closest_power_of_2 = 2**math.floor(math.log2(total_num_heads)) | |
base = torch.tensor(2**(-(2**-(math.log2(closest_power_of_2) - 3))), | |
dtype=torch.float32) | |
powers = torch.arange(1, 1 + closest_power_of_2, dtype=torch.int32) | |
slopes = torch.pow(base, powers) | |
if closest_power_of_2 != total_num_heads: | |
extra_base = torch.tensor( | |
2**(-(2**-(math.log2(2 * closest_power_of_2) - 3))), | |
dtype=torch.float32) | |
num_remaining_heads = min(closest_power_of_2, | |
total_num_heads - closest_power_of_2) | |
extra_powers = torch.arange(1, | |
1 + 2 * num_remaining_heads, | |
2, | |
dtype=torch.int32) | |
slopes = torch.cat( | |
[slopes, torch.pow(extra_base, extra_powers)], dim=0) | |
return slopes | |
class FalconAttention(nn.Module): | |
def __init__( | |
self, | |
config: FalconConfig, | |
linear_method: Optional[LinearMethodBase] = None, | |
): | |
super().__init__() | |
self.hidden_size = config.hidden_size | |
tp_size = get_tensor_model_parallel_world_size() | |
self.total_num_heads = config.num_attention_heads | |
assert self.total_num_heads % tp_size == 0 | |
self.num_heads = self.total_num_heads // tp_size | |
self.head_dim = self.hidden_size // self.total_num_heads | |
assert self.head_dim * self.total_num_heads == self.hidden_size | |
self.new_decoder_architecture = config.new_decoder_architecture | |
self.multi_query = config.multi_query | |
if self.new_decoder_architecture: | |
self.total_num_kv_heads = config.num_kv_heads | |
elif self.multi_query: | |
self.total_num_kv_heads = 1 | |
else: | |
self.total_num_kv_heads = self.total_num_heads | |
if self.total_num_kv_heads >= tp_size: | |
# Number of KV heads is greater than TP size, so we partition | |
# the KV heads across multiple tensor parallel GPUs. | |
assert self.total_num_kv_heads % tp_size == 0 | |
else: | |
# Number of KV heads is less than TP size, so we replicate | |
# the KV heads across multiple tensor parallel GPUs. | |
assert tp_size % self.total_num_kv_heads == 0 | |
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size) | |
self.query_key_value = QKVParallelLinear( | |
self.hidden_size, | |
self.head_dim, | |
self.total_num_heads, | |
self.total_num_kv_heads, | |
bias=config.bias, | |
skip_bias_add=True, | |
linear_method=linear_method, | |
) | |
self.q_size = self.num_heads * self.head_dim | |
self.kv_size = self.num_kv_heads * self.head_dim | |
# Layer-wise attention scaling | |
self.inv_norm_factor = 1.0 / math.sqrt(self.head_dim) | |
self.reduce_row_parallel_results = not (config.new_decoder_architecture | |
or config.parallel_attn) | |
self.dense = RowParallelLinear( | |
self.hidden_size, | |
self.hidden_size, | |
bias=config.bias, | |
skip_bias_add=True, | |
linear_method=linear_method, | |
reduce_results=self.reduce_row_parallel_results) | |
self.use_rotary = config.rotary | |
self.use_alibi = config.alibi | |
assert not (self.use_rotary and self.use_alibi), ( | |
"Rotary and alibi are mutually exclusive.") | |
if self.use_rotary: | |
rope_theta = getattr(config, "rope_theta", 10000) | |
max_position_embeddings = getattr(config, | |
"max_position_embeddings", 8192) | |
self.rotary_emb = get_rope( | |
self.head_dim, | |
rotary_dim=self.head_dim, | |
max_position=max_position_embeddings, | |
base=rope_theta, | |
) | |
self.attn = PagedAttention(self.num_heads, | |
self.head_dim, | |
self.inv_norm_factor, | |
num_kv_heads=self.num_kv_heads) | |
elif self.use_alibi: | |
tp_rank = get_tensor_model_parallel_rank() | |
head_start = tp_rank * self.num_heads | |
head_end = (tp_rank + 1) * self.num_heads | |
alibi_slopes = (_get_alibi_slopes(self.total_num_heads) * | |
self.inv_norm_factor) | |
alibi_slopes = alibi_slopes[head_start:head_end].tolist() | |
self.attn = PagedAttention(self.num_heads, | |
self.head_dim, | |
self.inv_norm_factor, | |
num_kv_heads=self.num_kv_heads, | |
alibi_slopes=alibi_slopes) | |
else: | |
self.attn = PagedAttention(self.num_heads, | |
self.head_dim, | |
scale=self.inv_norm_factor, | |
num_kv_heads=self.num_kv_heads) | |
def forward( | |
self, | |
positions: torch.Tensor, | |
hidden_states: torch.Tensor, | |
kv_cache: KVCache, | |
input_metadata: InputMetadata, | |
) -> torch.Tensor: | |
qkv, bias = self.query_key_value(hidden_states) | |
if bias is not None: | |
qkv += bias | |
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1) | |
if self.use_rotary: | |
q, k = self.rotary_emb(positions, q, k) | |
k_cache, v_cache = kv_cache | |
attn_output = self.attn(q, k, v, k_cache, v_cache, input_metadata) | |
attn_output, bias = self.dense(attn_output) | |
return attn_output, bias | |
class FalconMLP(nn.Module): | |
def __init__( | |
self, | |
config: FalconConfig, | |
linear_method: Optional[LinearMethodBase] = None, | |
): | |
super().__init__() | |
hidden_size = config.hidden_size | |
self.dense_h_to_4h = ColumnParallelLinear(hidden_size, | |
4 * hidden_size, | |
bias=config.bias, | |
skip_bias_add=True, | |
linear_method=linear_method) | |
quant_config = getattr(linear_method, "quant_config", None) | |
self.act = get_act_fn("gelu", quant_config, 4 * hidden_size) | |
self.reduce_row_parallel_results = not (config.new_decoder_architecture | |
or config.parallel_attn) | |
self.dense_4h_to_h = RowParallelLinear( | |
4 * hidden_size, | |
hidden_size, | |
bias=config.bias, | |
skip_bias_add=True, | |
reduce_results=self.reduce_row_parallel_results, | |
linear_method=linear_method) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
# NOTE(zhuohan): Following huggingface, we do not fuse bias add here. | |
x, bias = self.dense_h_to_4h(x) | |
if bias is not None: | |
x += bias | |
x = self.act(x) | |
x, bias = self.dense_4h_to_h(x) | |
return x, bias | |
class FalconDecoderLayer(nn.Module): | |
def __init__( | |
self, | |
config: FalconConfig, | |
linear_method: Optional[LinearMethodBase] = None, | |
): | |
super().__init__() | |
hidden_size = config.hidden_size | |
self.num_heads = config.num_attention_heads | |
self.self_attention = FalconAttention(config, linear_method) | |
self.mlp = FalconMLP(config, linear_method) | |
self.config = config | |
if config.new_decoder_architecture: | |
# The layer norm before self-attention | |
self.ln_attn = LayerNorm(hidden_size, | |
eps=config.layer_norm_epsilon) | |
# The layer norm before the MLP | |
self.ln_mlp = LayerNorm(hidden_size, eps=config.layer_norm_epsilon) | |
else: | |
self.input_layernorm = LayerNorm(hidden_size, | |
eps=config.layer_norm_epsilon) | |
if not config.parallel_attn: | |
self.post_attention_layernorm = LayerNorm( | |
hidden_size, eps=config.layer_norm_epsilon) | |
self.reduce_row_parallel_results = not (config.new_decoder_architecture | |
or config.parallel_attn) | |
def forward( | |
self, | |
positions: torch.Tensor, | |
hidden_states: torch.Tensor, | |
kv_cache: KVCache, | |
input_metadata: InputMetadata, | |
) -> torch.Tensor: | |
residual = hidden_states | |
if self.config.new_decoder_architecture: | |
attention_layernorm_out = self.ln_attn(hidden_states) | |
mlp_layernorm_out = self.ln_mlp(hidden_states) | |
else: | |
attention_layernorm_out = self.input_layernorm(hidden_states) | |
# Self attention. | |
attention_output, attention_bias = self.self_attention( | |
positions=positions, | |
hidden_states=attention_layernorm_out, | |
kv_cache=kv_cache, | |
input_metadata=input_metadata, | |
) | |
if self.reduce_row_parallel_results and attention_bias is not None: | |
attention_output += attention_bias | |
if not self.config.new_decoder_architecture: | |
if self.config.parallel_attn: | |
mlp_layernorm_out = attention_layernorm_out | |
else: | |
residual += attention_output | |
mlp_layernorm_out = self.post_attention_layernorm(residual) | |
# MLP. | |
mlp_output, mlp_bias = self.mlp(mlp_layernorm_out) | |
if self.reduce_row_parallel_results and mlp_bias is not None: | |
mlp_output += mlp_bias | |
if not self.reduce_row_parallel_results: | |
# When MLP and Attention layers are parallel, we can use | |
# only one all-reduce operator to reduce the results from | |
# both MLP and Attention layers. | |
mlp_output += attention_output | |
mlp_output = tensor_model_parallel_all_reduce(mlp_output) | |
if attention_bias is not None: | |
mlp_output += attention_bias | |
if mlp_bias is not None: | |
mlp_output += mlp_bias | |
output = mlp_output + residual | |
return output | |
class FalconModel(nn.Module): | |
def __init__( | |
self, | |
config: FalconConfig, | |
linear_method: Optional[LinearMethodBase] = None, | |
): | |
super().__init__() | |
self.config = config | |
self.embed_dim = config.hidden_size | |
self.num_heads = config.num_attention_heads | |
self.use_alibi = config.alibi | |
# Embedding + LN Embedding | |
self.word_embeddings = VocabParallelEmbedding( | |
config.vocab_size, | |
self.embed_dim, | |
) | |
# Transformer blocks | |
self.h = nn.ModuleList([ | |
FalconDecoderLayer(config, linear_method) | |
for _ in range(config.num_hidden_layers) | |
]) | |
# Final Layer Norm | |
self.ln_f = LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon) | |
def forward( | |
self, | |
input_ids: torch.LongTensor, | |
positions: torch.Tensor, | |
kv_caches: List[KVCache], | |
input_metadata: InputMetadata, | |
) -> torch.Tensor: | |
hidden_states = self.word_embeddings(input_ids) | |
for i in range(len(self.h)): | |
layer = self.h[i] | |
hidden_states = layer( | |
positions, | |
hidden_states, | |
kv_caches[i], | |
input_metadata, | |
) | |
hidden_states = self.ln_f(hidden_states) | |
return hidden_states | |
class FalconForCausalLM(nn.Module): | |
def __init__( | |
self, | |
config: FalconConfig, | |
linear_method: Optional[LinearMethodBase] = None, | |
): | |
super().__init__() | |
self.config = config | |
self.linear_method = linear_method | |
self.transformer = FalconModel(config, linear_method) | |
self.lm_head = ParallelLMHead( | |
config.vocab_size, | |
config.hidden_size, | |
) | |
self.sampler = Sampler(config.vocab_size) | |
def forward( | |
self, | |
input_ids: torch.LongTensor, | |
positions: torch.Tensor, | |
kv_caches: List[KVCache], | |
input_metadata: InputMetadata, | |
) -> torch.Tensor: | |
hidden_states = self.transformer( | |
input_ids, | |
positions, | |
kv_caches, | |
input_metadata, | |
) | |
return hidden_states | |
def sample( | |
self, | |
hidden_states: torch.Tensor, | |
sampling_metadata: SamplingMetadata, | |
) -> Optional[SamplerOutput]: | |
next_tokens = self.sampler(self.lm_head.weight, hidden_states, | |
sampling_metadata) | |
return next_tokens | |
def load_weights(self, | |
model_name_or_path: str, | |
cache_dir: Optional[str] = None, | |
load_format: str = "auto", | |
revision: Optional[str] = None): | |
total_num_heads = self.config.num_attention_heads | |
if self.config.new_decoder_architecture: | |
total_num_kv_heads = self.config.num_kv_heads | |
elif self.config.multi_query: | |
total_num_kv_heads = 1 | |
else: | |
total_num_kv_heads = total_num_heads | |
num_query_heads_per_kv_head = total_num_heads // total_num_kv_heads | |
params_dict = dict(self.named_parameters()) | |
for name, loaded_weight in hf_model_weights_iterator( | |
model_name_or_path, cache_dir, load_format, revision): | |
# Skip loading extra bias for GPTQ models. | |
if name.endswith(".bias") and name not in params_dict: | |
continue | |
param = params_dict[name] | |
if "query_key_value" in name: | |
output_dim = getattr(param, "output_dim", None) | |
loaded_weight_shape = loaded_weight.shape | |
if output_dim is not None: | |
loaded_weight = loaded_weight.view( | |
loaded_weight_shape[:output_dim] + | |
(total_num_kv_heads, num_query_heads_per_kv_head + 2, | |
-1) + loaded_weight_shape[output_dim + 1:]) | |
wq = loaded_weight.narrow( | |
output_dim + 1, 0, | |
num_query_heads_per_kv_head).reshape( | |
*loaded_weight_shape[:output_dim], -1, | |
*loaded_weight_shape[output_dim + 1:]) | |
wk = loaded_weight.narrow( | |
output_dim + 1, num_query_heads_per_kv_head, | |
1).reshape(*loaded_weight_shape[:output_dim], -1, | |
*loaded_weight_shape[output_dim + 1:]) | |
wv = loaded_weight.narrow( | |
output_dim + 1, num_query_heads_per_kv_head + 1, | |
1).reshape(*loaded_weight_shape[:output_dim], -1, | |
*loaded_weight_shape[output_dim + 1:]) | |
loaded_weight = torch.cat([wq, wk, wv], dim=output_dim) | |
weight_loader = getattr(param, "weight_loader", | |
default_weight_loader) | |
weight_loader(param, loaded_weight) | |