Spaces:
Sleeping
Sleeping
# coding=utf-8 | |
# Adapted from | |
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/opt/modeling_opt.py | |
# Copyright 2023 The vLLM team. | |
# Copyright 2022 The Fairseq Authors and The HuggingFace Inc. team. All rights | |
# reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Inference-only OPT model compatible with HuggingFace weights.""" | |
from typing import List, Optional, Tuple | |
import torch | |
from torch import nn | |
from transformers import OPTConfig | |
from vllm.model_executor.input_metadata import InputMetadata | |
from vllm.model_executor.layers.activation import get_act_fn | |
from vllm.model_executor.layers.attention import PagedAttention | |
from vllm.model_executor.layers.linear import (ColumnParallelLinear, | |
LinearMethodBase, | |
QKVParallelLinear, | |
ReplicatedLinear, | |
RowParallelLinear) | |
from vllm.model_executor.layers.sampler import Sampler | |
from vllm.model_executor.layers.vocab_parallel_embedding import ( | |
VocabParallelEmbedding) | |
from vllm.model_executor.parallel_utils.parallel_state import ( | |
get_tensor_model_parallel_world_size) | |
from vllm.model_executor.sampling_metadata import SamplingMetadata | |
from vllm.model_executor.weight_utils import (default_weight_loader, | |
hf_model_weights_iterator) | |
from vllm.sequence import SamplerOutput | |
KVCache = Tuple[torch.Tensor, torch.Tensor] | |
class OPTLearnedPositionalEmbedding(nn.Embedding): | |
def __init__(self, num_embeddings: int, embedding_dim: int): | |
# OPT is set up so that if padding_idx is specified then offset the | |
# embedding ids by 2 and adjust num_embeddings appropriately. Other | |
# models don't have this hack | |
self.offset = 2 | |
super().__init__(num_embeddings + self.offset, embedding_dim) | |
def forward(self, positions: torch.Tensor): | |
return super().forward(positions + self.offset) | |
class OPTAttention(nn.Module): | |
def __init__( | |
self, | |
embed_dim: int, | |
num_heads: int, | |
bias: bool = True, | |
linear_method: Optional[LinearMethodBase] = None, | |
) -> None: | |
super().__init__() | |
self.embed_dim = embed_dim | |
tensor_model_parallel_world_size = ( | |
get_tensor_model_parallel_world_size()) | |
total_num_heads = num_heads | |
assert num_heads % tensor_model_parallel_world_size == 0 | |
self.num_heads = total_num_heads // tensor_model_parallel_world_size | |
self.head_dim = embed_dim // total_num_heads | |
self.scaling = self.head_dim**-0.5 | |
self.qkv_proj = QKVParallelLinear( | |
embed_dim, | |
self.head_dim, | |
total_num_heads, | |
bias=bias, | |
linear_method=linear_method, | |
) | |
self.out_proj = RowParallelLinear( | |
embed_dim, | |
embed_dim, | |
bias=bias, | |
linear_method=linear_method, | |
) | |
self.attn = PagedAttention(self.num_heads, | |
self.head_dim, | |
scale=self.scaling) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
kv_cache: KVCache, | |
input_metadata: InputMetadata, | |
) -> torch.Tensor: | |
qkv, _ = self.qkv_proj(hidden_states) | |
q, k, v = qkv.chunk(chunks=3, dim=-1) | |
key_cache, value_cache = kv_cache | |
attn_output = self.attn(q, k, v, key_cache, value_cache, | |
input_metadata) | |
output, _ = self.out_proj(attn_output) | |
return output | |
class OPTDecoderLayer(nn.Module): | |
def __init__( | |
self, | |
config: OPTConfig, | |
linear_method: Optional[LinearMethodBase] = None, | |
): | |
super().__init__() | |
self.config = config | |
self.embed_dim = config.hidden_size | |
self.self_attn = OPTAttention( | |
embed_dim=self.embed_dim, | |
num_heads=config.num_attention_heads, | |
bias=config.enable_bias, | |
linear_method=linear_method, | |
) | |
self.do_layer_norm_before = config.do_layer_norm_before | |
self.self_attn_layer_norm = nn.LayerNorm( | |
self.embed_dim, | |
elementwise_affine=config.layer_norm_elementwise_affine) | |
self.fc1 = ColumnParallelLinear( | |
self.embed_dim, | |
config.ffn_dim, | |
bias=config.enable_bias, | |
linear_method=linear_method, | |
) | |
quant_config = getattr(linear_method, "quant_config", None) | |
self.activation_fn = get_act_fn(config.activation_function, | |
quant_config, config.ffn_dim) | |
self.fc2 = RowParallelLinear( | |
config.ffn_dim, | |
self.embed_dim, | |
bias=config.enable_bias, | |
linear_method=linear_method, | |
) | |
self.final_layer_norm = nn.LayerNorm( | |
self.embed_dim, | |
elementwise_affine=config.layer_norm_elementwise_affine) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
kv_cache: KVCache, | |
input_metadata: InputMetadata, | |
) -> torch.Tensor: | |
# Self Attention | |
residual = hidden_states | |
# 125m, 1.7B, ..., 175B applies layer norm BEFORE attention | |
if self.do_layer_norm_before: | |
hidden_states = self.self_attn_layer_norm(hidden_states) | |
hidden_states = self.self_attn(hidden_states=hidden_states, | |
kv_cache=kv_cache, | |
input_metadata=input_metadata) | |
hidden_states = residual + hidden_states | |
# 350m applies layer norm AFTER attention | |
if not self.do_layer_norm_before: | |
hidden_states = self.self_attn_layer_norm(hidden_states) | |
# Fully Connected | |
residual = hidden_states | |
# 125m, 1.7B, ..., 175B applies layer norm BEFORE attention | |
if self.do_layer_norm_before: | |
hidden_states = self.final_layer_norm(hidden_states) | |
hidden_states, _ = self.fc1(hidden_states) | |
hidden_states = self.activation_fn(hidden_states) | |
hidden_states, _ = self.fc2(hidden_states) | |
hidden_states = residual + hidden_states | |
# 350m applies layer norm AFTER attention | |
if not self.do_layer_norm_before: | |
hidden_states = self.final_layer_norm(hidden_states) | |
return hidden_states | |
class OPTDecoder(nn.Module): | |
def __init__( | |
self, | |
config: OPTConfig, | |
linear_method: Optional[LinearMethodBase] = None, | |
): | |
super().__init__() | |
self.config = config | |
self.padding_idx = config.pad_token_id | |
self.max_target_positions = config.max_position_embeddings | |
self.vocab_size = config.vocab_size | |
self.embed_tokens = VocabParallelEmbedding( | |
config.vocab_size, | |
config.word_embed_proj_dim, | |
) | |
# Positional embeddings are replicated (not sharded). | |
self.embed_positions = OPTLearnedPositionalEmbedding( | |
config.max_position_embeddings, config.hidden_size) | |
# Project out & in will be replicated if they exist. | |
if config.word_embed_proj_dim != config.hidden_size: | |
self.project_out = ReplicatedLinear(config.hidden_size, | |
config.word_embed_proj_dim, | |
bias=False, | |
linear_method=linear_method) | |
else: | |
self.project_out = None | |
if config.word_embed_proj_dim != config.hidden_size: | |
self.project_in = ReplicatedLinear(config.word_embed_proj_dim, | |
config.hidden_size, | |
bias=False, | |
linear_method=linear_method) | |
else: | |
self.project_in = None | |
# Note that the only purpose of `config._remove_final_layer_norm` is to | |
# keep backward compatibility with checkpoints that have been fine-tuned | |
# before transformers v4.20.1 | |
# see https://github.com/facebookresearch/metaseq/pull/164 | |
if config.do_layer_norm_before and not config._remove_final_layer_norm: | |
self.final_layer_norm = nn.LayerNorm( | |
config.hidden_size, | |
elementwise_affine=config.layer_norm_elementwise_affine) | |
else: | |
self.final_layer_norm = None | |
self.layers = nn.ModuleList([ | |
OPTDecoderLayer(config, linear_method) | |
for _ in range(config.num_hidden_layers) | |
]) | |
def forward( | |
self, | |
input_ids: torch.Tensor, | |
positions: torch.Tensor, | |
kv_caches: List[KVCache], | |
input_metadata: InputMetadata, | |
) -> torch.Tensor: | |
inputs_embeds = self.embed_tokens(input_ids) | |
pos_embeds = self.embed_positions(positions) | |
if self.project_in is not None: | |
inputs_embeds, _ = self.project_in(inputs_embeds) | |
hidden_states = inputs_embeds + pos_embeds | |
for i in range(len(self.layers)): | |
layer = self.layers[i] | |
hidden_states = layer(hidden_states, kv_caches[i], input_metadata) | |
if self.final_layer_norm is not None: | |
hidden_states = self.final_layer_norm(hidden_states) | |
if self.project_out is not None: | |
hidden_states, _ = self.project_out(hidden_states) | |
return hidden_states | |
class OPTModel(nn.Module): | |
def __init__( | |
self, | |
config: OPTConfig, | |
linear_method: Optional[LinearMethodBase] = None, | |
): | |
super().__init__() | |
self.decoder = OPTDecoder(config, linear_method) | |
def forward( | |
self, | |
input_ids: torch.Tensor, | |
positions: torch.Tensor, | |
kv_caches: List[KVCache], | |
input_metadata: InputMetadata, | |
) -> torch.Tensor: | |
return self.decoder(input_ids, positions, kv_caches, input_metadata) | |
class OPTForCausalLM(nn.Module): | |
def __init__( | |
self, | |
config, | |
linear_method: Optional[LinearMethodBase] = None, | |
): | |
super().__init__() | |
self.config = config | |
self.linear_method = linear_method | |
self.model = OPTModel(config, linear_method) | |
self.lm_head_weight = self.model.decoder.embed_tokens.weight | |
self.sampler = Sampler(config.vocab_size) | |
def forward( | |
self, | |
input_ids: torch.Tensor, | |
positions: torch.Tensor, | |
kv_caches: List[KVCache], | |
input_metadata: InputMetadata, | |
) -> torch.Tensor: | |
hidden_states = self.model(input_ids, positions, kv_caches, | |
input_metadata) | |
return hidden_states | |
def sample( | |
self, | |
hidden_states: torch.Tensor, | |
sampling_metadata: SamplingMetadata, | |
) -> Optional[SamplerOutput]: | |
next_tokens = self.sampler(self.lm_head_weight, hidden_states, | |
sampling_metadata) | |
return next_tokens | |
def load_weights(self, | |
model_name_or_path: str, | |
cache_dir: Optional[str] = None, | |
load_format: str = "auto", | |
revision: Optional[str] = None): | |
stacked_params_mapping = [ | |
# (param_name, shard_name, shard_id) | |
("qkv_proj", "q_proj", "q"), | |
("qkv_proj", "k_proj", "k"), | |
("qkv_proj", "v_proj", "v"), | |
] | |
params_dict = dict(self.named_parameters(remove_duplicate=False)) | |
for name, loaded_weight in hf_model_weights_iterator( | |
model_name_or_path, cache_dir, load_format, revision): | |
if "lm_head.weight" in name: | |
continue | |
if name.startswith("decoder."): | |
name = "model." + name | |
for (param_name, weight_name, shard_id) in stacked_params_mapping: | |
if weight_name not in name: | |
continue | |
name = name.replace(weight_name, param_name) | |
# Skip loading extra bias for GPTQ models. | |
if name.endswith(".bias") and name not in params_dict: | |
continue | |
param = params_dict[name] | |
weight_loader = param.weight_loader | |
weight_loader(param, loaded_weight, shard_id) | |
break | |
else: | |
# Skip loading extra bias for GPTQ models. | |
if name.endswith(".bias") and name not in params_dict: | |
continue | |
param = params_dict[name] | |
weight_loader = getattr(param, "weight_loader", | |
default_weight_loader) | |
weight_loader(param, loaded_weight) | |