Spaces:
Sleeping
Sleeping
# coding=utf-8 | |
# Copyright 2023 Stability AI, EleutherAI, and The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
# This code is based off the following work: | |
# https://huggingface.co/stabilityai/stablelm-3b-4e1t/blob/main/modeling_stablelm_epoch.py | |
# https://huggingface.co/stabilityai/stablelm-3b-4e1t/blob/main/config.json | |
"""Inference-only StabeLM (https://github.com/Stability-AI/StableLM) model compatible with HuggingFace weights.""" | |
from typing import List, Optional, Tuple | |
import torch | |
from torch import nn | |
from transformers import PretrainedConfig | |
from vllm.model_executor.input_metadata import InputMetadata | |
from vllm.model_executor.layers.activation import SiluAndMul | |
from vllm.model_executor.layers.attention import PagedAttention | |
from vllm.model_executor.layers.linear import (LinearMethodBase, | |
MergedColumnParallelLinear, | |
QKVParallelLinear, | |
RowParallelLinear) | |
from vllm.model_executor.layers.rotary_embedding import get_rope | |
from vllm.model_executor.layers.sampler import Sampler | |
from vllm.model_executor.layers.vocab_parallel_embedding import ( | |
VocabParallelEmbedding, ParallelLMHead) | |
from vllm.model_executor.parallel_utils.parallel_state import ( | |
get_tensor_model_parallel_world_size) | |
from vllm.model_executor.sampling_metadata import SamplingMetadata | |
from vllm.model_executor.weight_utils import (default_weight_loader, | |
hf_model_weights_iterator) | |
from vllm.sequence import SamplerOutput | |
KVCache = Tuple[torch.Tensor, torch.Tensor] | |
class StablelmMLP(nn.Module): | |
def __init__(self, | |
config: PretrainedConfig, | |
linear_method: Optional[LinearMethodBase] = None) -> None: | |
super().__init__() | |
self.config = config | |
self.hidden_size = config.hidden_size | |
self.intermediate_size = config.intermediate_size | |
self.gate_up_proj = MergedColumnParallelLinear( | |
config.hidden_size, [config.intermediate_size] * 2, | |
bias=False, | |
linear_method=linear_method) | |
self.down_proj = RowParallelLinear(config.intermediate_size, | |
config.hidden_size, | |
bias=False) | |
self.act_fn = SiluAndMul() | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
gate_up, _ = self.gate_up_proj(x) | |
x = self.act_fn(gate_up) | |
x, _ = self.down_proj(x) | |
return x | |
class StablelmAttention(nn.Module): | |
def __init__(self, | |
config: PretrainedConfig, | |
linear_method: Optional[LinearMethodBase] = None) -> None: | |
super().__init__() | |
self.config = config | |
self.hidden_size = config.hidden_size | |
tp_size = get_tensor_model_parallel_world_size() | |
self.total_num_heads = config.num_attention_heads | |
self.num_heads = self.total_num_heads // tp_size | |
self.total_num_key_value_heads = config.num_key_value_heads | |
if self.total_num_key_value_heads >= tp_size: | |
# Number of KV heads is greater than TP size, so we partition | |
# the KV heads across multiple tensor parallel GPUs. | |
assert self.total_num_key_value_heads % tp_size == 0 | |
else: | |
# Number of KV heads is less than TP size, so we replicate | |
# the KV heads across multiple tensor parallel GPUs. | |
assert tp_size % self.total_num_key_value_heads == 0 | |
self.num_key_value_heads = max( | |
1, self.total_num_key_value_heads // tp_size) | |
self.head_dim = self.hidden_size // self.total_num_heads | |
self.max_position_embeddings = config.max_position_embeddings | |
self.rotary_ndims = int(self.head_dim * self.config.rope_pct) | |
self.scaling = self.head_dim**-0.5 | |
self.q_size = self.num_heads * self.head_dim | |
self.kv_size = self.num_key_value_heads * self.head_dim | |
self.qkv_bias = getattr(config, "use_qkv_bias", False) | |
if (self.head_dim * self.num_heads * tp_size) != self.hidden_size: | |
raise ValueError( | |
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" | |
f" and `num_heads`: {self.num_heads}).") | |
self.qkv_proj = QKVParallelLinear(self.hidden_size, | |
self.head_dim, | |
self.total_num_heads, | |
self.total_num_key_value_heads, | |
self.qkv_bias, | |
linear_method=linear_method) | |
self.o_proj = RowParallelLinear(self.total_num_heads * self.head_dim, | |
self.hidden_size, | |
bias=False, | |
linear_method=linear_method) | |
self.rotary_ndims = int(self.head_dim * self.config.rope_pct) | |
self.rotary_emb = get_rope( | |
self.head_dim, | |
rotary_dim=self.rotary_ndims, | |
max_position=self.config.max_position_embeddings, | |
base=self.config.rope_theta, | |
) | |
self.attn = PagedAttention(self.num_heads, | |
self.head_dim, | |
self.scaling, | |
num_kv_heads=self.num_key_value_heads) | |
def forward( | |
self, | |
positions: torch.Tensor, | |
hidden_states: torch.Tensor, | |
kv_cache: KVCache, | |
input_metadata: InputMetadata, | |
) -> torch.Tensor: | |
qkv, _ = self.qkv_proj(hidden_states) | |
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1) | |
q, k = self.rotary_emb(positions, q, k) | |
k_cache, v_cache = kv_cache | |
attn_output = self.attn(q, k, v, k_cache, v_cache, input_metadata) | |
output, _ = self.o_proj(attn_output) | |
return output | |
class StablelmDecoderLayer(nn.Module): | |
def __init__( | |
self, | |
config: PretrainedConfig, | |
linear_method: Optional[LinearMethodBase] = None, | |
) -> None: | |
super().__init__() | |
self.self_attn = StablelmAttention(config) | |
self.mlp = StablelmMLP(config, linear_method) | |
self.input_layernorm = nn.LayerNorm(config.hidden_size, | |
eps=config.norm_eps) | |
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, | |
eps=config.norm_eps) | |
def forward( | |
self, | |
positions: torch.Tensor, | |
hidden_states: torch.Tensor, | |
kv_cache: KVCache, | |
input_metadata: InputMetadata, | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
# Self Attention | |
residual = hidden_states | |
hidden_states = self.input_layernorm(hidden_states) | |
hidden_states = self.self_attn( | |
positions=positions, | |
hidden_states=hidden_states, | |
kv_cache=kv_cache, | |
input_metadata=input_metadata, | |
) | |
hidden_states = residual + hidden_states | |
# Fully Connected | |
residual = hidden_states | |
hidden_states = self.post_attention_layernorm(hidden_states) | |
hidden_states = self.mlp(hidden_states) | |
hidden_states = residual + hidden_states | |
return hidden_states, residual | |
class StableLMEpochModel(nn.Module): | |
def __init__(self, | |
config: PretrainedConfig, | |
linear_method: Optional[LinearMethodBase] = None) -> None: | |
super().__init__() | |
# self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id) | |
self.embed_tokens = VocabParallelEmbedding( | |
config.vocab_size, | |
config.hidden_size, | |
) | |
self.layers = nn.ModuleList([ | |
StablelmDecoderLayer(config, linear_method) | |
for _ in range(config.num_hidden_layers) | |
]) | |
self.norm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps) | |
def forward( | |
self, | |
input_ids: torch.Tensor, | |
positions: torch.Tensor, | |
kv_caches: List[KVCache], | |
input_metadata: InputMetadata, | |
) -> torch.Tensor: | |
hidden_states = self.embed_tokens(input_ids) | |
for i in range(len(self.layers)): | |
layer = self.layers[i] | |
hidden_states, residual = layer( | |
positions, | |
hidden_states, | |
kv_caches[i], | |
input_metadata, | |
) | |
hidden_states = self.norm(hidden_states) | |
return hidden_states | |
class StablelmForCausalLM(nn.Module): | |
def __init__( | |
self, | |
config: PretrainedConfig, | |
linear_method: Optional[LinearMethodBase] = None, | |
) -> None: | |
super().__init__() | |
self.config = config | |
self.linear_method = linear_method | |
self.model = StableLMEpochModel(config, linear_method) | |
self.lm_head = ParallelLMHead(config.vocab_size, config.hidden_size) | |
self.sampler = Sampler(config.vocab_size) | |
def forward( | |
self, | |
input_ids: torch.Tensor, | |
positions: torch.Tensor, | |
kv_caches: List[KVCache], | |
input_metadata: InputMetadata, | |
) -> torch.Tensor: | |
hidden_states = self.model(input_ids, positions, kv_caches, | |
input_metadata) | |
return hidden_states | |
def sample( | |
self, | |
hidden_states: torch.Tensor, | |
sampling_metadata: SamplingMetadata, | |
) -> Optional[SamplerOutput]: | |
next_tokens = self.sampler(self.lm_head.weight, hidden_states, | |
sampling_metadata) | |
return next_tokens | |
def load_weights(self, | |
model_name_or_path: str, | |
cache_dir: Optional[str] = None, | |
load_format: str = "auto", | |
revision: Optional[str] = None): | |
stacked_params_mapping = [ | |
# (param_name, shard_name, shard_id) | |
("qkv_proj", "q_proj", "q"), | |
("qkv_proj", "k_proj", "k"), | |
("qkv_proj", "v_proj", "v"), | |
("gate_up_proj", "gate_proj", 0), | |
("gate_up_proj", "up_proj", 1), | |
] | |
params_dict = dict(self.named_parameters()) | |
for name, loaded_weight in hf_model_weights_iterator( | |
model_name_or_path, cache_dir, load_format, revision): | |
if "rotary_emb.inv_freq" in name: | |
continue | |
if ("rotary_emb.cos_cached" in name | |
or "rotary_emb.sin_cached" in name): | |
# Models trained using ColossalAI may include these tensors in | |
# the checkpoint. Skip them. | |
continue | |
for (param_name, weight_name, shard_id) in stacked_params_mapping: | |
if weight_name not in name: | |
continue | |
name = name.replace(weight_name, param_name) | |
# Skip loading extra bias for GPTQ models. | |
if name.endswith(".bias") and name not in params_dict: | |
continue | |
param = params_dict[name] | |
weight_loader = param.weight_loader | |
weight_loader(param, loaded_weight, shard_id) | |
break | |
else: | |
# Skip loading extra bias for GPTQ models. | |
if name.endswith(".bias") and name not in params_dict: | |
continue | |
param = params_dict[name] | |
weight_loader = getattr(param, "weight_loader", | |
default_weight_loader) | |
weight_loader(param, loaded_weight) | |