Spaces:
Sleeping
Sleeping
from typing import List, Optional, Tuple, Union | |
from transformers import (AutoTokenizer, PreTrainedTokenizer, | |
PreTrainedTokenizerFast) | |
from vllm.logger import init_logger | |
from vllm.lora.request import LoRARequest | |
from vllm.utils import make_async, LRUCache | |
from vllm.transformers_utils.tokenizers import * | |
logger = init_logger(__name__) | |
def get_tokenizer( | |
tokenizer_name: str, | |
*args, | |
tokenizer_mode: str = "auto", | |
trust_remote_code: bool = False, | |
tokenizer_revision: Optional[str] = None, | |
**kwargs, | |
) -> Union[PreTrainedTokenizer, PreTrainedTokenizerFast]: | |
"""Gets a tokenizer for the given model name via Huggingface.""" | |
if tokenizer_mode == "slow": | |
if kwargs.get("use_fast", False): | |
raise ValueError( | |
"Cannot use the fast tokenizer in slow tokenizer mode.") | |
kwargs["use_fast"] = False | |
try: | |
tokenizer = AutoTokenizer.from_pretrained( | |
tokenizer_name, | |
*args, | |
trust_remote_code=trust_remote_code, | |
tokenizer_revision=tokenizer_revision, | |
**kwargs) | |
except ValueError as e: | |
# If the error pertains to the tokenizer class not existing or not | |
# currently being imported, suggest using the --trust-remote-code flag. | |
if (not trust_remote_code and | |
("does not exist or is not currently imported." in str(e) | |
or "requires you to execute the tokenizer file" in str(e))): | |
err_msg = ( | |
"Failed to load the tokenizer. If the tokenizer is a custom " | |
"tokenizer not yet available in the HuggingFace transformers " | |
"library, consider setting `trust_remote_code=True` in LLM " | |
"or using the `--trust-remote-code` flag in the CLI.") | |
raise RuntimeError(err_msg) from e | |
else: | |
raise e | |
except AttributeError as e: | |
if "BaichuanTokenizer" in str(e): | |
# This is for the error "'BaichuanTokenizer' object has no | |
# attribute 'sp_model'". | |
tokenizer = BaichuanTokenizer.from_pretrained( | |
tokenizer_name, | |
*args, | |
trust_remote_code=trust_remote_code, | |
tokenizer_revision=tokenizer_revision, | |
**kwargs) | |
else: | |
raise e | |
if not isinstance(tokenizer, PreTrainedTokenizerFast): | |
logger.warning( | |
"Using a slow tokenizer. This might cause a significant " | |
"slowdown. Consider using a fast tokenizer instead.") | |
return tokenizer | |
def get_lora_tokenizer(lora_request: LoRARequest, *args, | |
**kwargs) -> Optional[PreTrainedTokenizer]: | |
if lora_request is None: | |
return None | |
try: | |
tokenizer = get_tokenizer(lora_request.lora_local_path, *args, | |
**kwargs) | |
except OSError as e: | |
# No tokenizer was found in the LoRA folder, | |
# use base model tokenizer | |
logger.warning( | |
f"No tokenizer found in {lora_request.lora_local_path}, " | |
"using base model tokenizer instead. " | |
f"(Exception: {str(e)})") | |
tokenizer = None | |
return tokenizer | |
get_lora_tokenizer_async = make_async(get_lora_tokenizer) | |
class TokenizerGroup: | |
"""A group of tokenizers that can be used for LoRA adapters.""" | |
def __init__(self, tokenizer_id: str, enable_lora: bool, max_num_seqs: int, | |
max_input_length: Optional[int], **tokenizer_config): | |
self.tokenizer_id = tokenizer_id | |
self.tokenizer_config = tokenizer_config | |
self.enable_lora = enable_lora | |
self.max_input_length = max_input_length | |
self.tokenizer = get_tokenizer(self.tokenizer_id, **tokenizer_config) | |
if enable_lora: | |
self.lora_tokenizers = LRUCache(capacity=max_num_seqs) | |
else: | |
self.lora_tokenizers = None | |
def encode(self, | |
prompt: str, | |
request_id: Optional[str] = None, | |
lora_request: Optional[LoRARequest] = None) -> List[int]: | |
tokenizer = self.get_lora_tokenizer(lora_request) | |
return tokenizer.encode(prompt) | |
async def encode_async( | |
self, | |
prompt: str, | |
request_id: Optional[str] = None, | |
lora_request: Optional[LoRARequest] = None) -> List[int]: | |
tokenizer = await self.get_lora_tokenizer_async(lora_request) | |
return tokenizer.encode(prompt) | |
def get_lora_tokenizer( | |
self, | |
lora_request: Optional[LoRARequest]) -> "PreTrainedTokenizer": | |
if not lora_request or not self.enable_lora: | |
return self.tokenizer | |
if lora_request.lora_int_id not in self.lora_tokenizers: | |
tokenizer = (get_lora_tokenizer( | |
lora_request, **self.tokenizer_config) or self.tokenizer) | |
self.lora_tokenizers.put(lora_request.lora_int_id, tokenizer) | |
return tokenizer | |
else: | |
return self.lora_tokenizers.get(lora_request.lora_int_id) | |
async def get_lora_tokenizer_async( | |
self, | |
lora_request: Optional[LoRARequest]) -> "PreTrainedTokenizer": | |
if not lora_request or not self.enable_lora: | |
return self.tokenizer | |
if lora_request.lora_int_id not in self.lora_tokenizers: | |
tokenizer = (await get_lora_tokenizer_async( | |
lora_request, **self.tokenizer_config) or self.tokenizer) | |
self.lora_tokenizers.put(lora_request.lora_int_id, tokenizer) | |
return tokenizer | |
else: | |
return self.lora_tokenizers.get(lora_request.lora_int_id) | |
def _convert_tokens_to_string_with_added_encoders( | |
tokenizer: Union[PreTrainedTokenizer, PreTrainedTokenizerFast], | |
output_tokens: List[str], | |
skip_special_tokens: bool, | |
spaces_between_special_tokens: bool, | |
) -> str: | |
# Adapted from | |
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/tokenization_utils.py#L921 | |
# NOTE(woosuk): The following code is slow because it runs a for loop over | |
# the output_tokens. In Python, running a for loop over a list can be slow | |
# even when the loop body is very simple. | |
sub_texts = [] | |
current_sub_text = [] | |
all_special_tokens = set(tokenizer.all_special_tokens) | |
for token in output_tokens: | |
if skip_special_tokens and token in all_special_tokens: | |
continue | |
if token in tokenizer.get_added_vocab(): | |
if current_sub_text: | |
sub_text = tokenizer.convert_tokens_to_string(current_sub_text) | |
sub_texts.append(sub_text) | |
current_sub_text = [] | |
sub_texts.append(token) | |
else: | |
current_sub_text.append(token) | |
if current_sub_text: | |
sub_text = tokenizer.convert_tokens_to_string(current_sub_text) | |
sub_texts.append(sub_text) | |
if spaces_between_special_tokens: | |
return " ".join(sub_texts) | |
else: | |
return "".join(sub_texts) | |
# Based on | |
# https://github.com/huggingface/text-generation-inference/blob/v0.9.4/server/text_generation_server/models/model.py#L62C9-L62C15 | |
# under Apache 2.0 license | |
def detokenize_incrementally( | |
tokenizer: Union[PreTrainedTokenizer, PreTrainedTokenizerFast], | |
all_input_ids: List[int], | |
prev_tokens: Optional[List[str]], | |
prefix_offset: int = 0, | |
read_offset: int = 0, | |
skip_special_tokens: bool = False, | |
spaces_between_special_tokens: bool = True, | |
) -> Tuple[List[str], str, int, int]: | |
new_token_id = all_input_ids[-1] | |
# This is the first iteration for this sequence | |
if prev_tokens is None: | |
new_tokens = tokenizer.convert_ids_to_tokens( | |
all_input_ids, skip_special_tokens=skip_special_tokens) | |
output_tokens = new_tokens | |
# 5 is an arbitrary value that should work for all | |
# tokenizers (bigger = more conservative). | |
# Subtract 1 extra to account for the generated token. | |
prefix_offset = max(len(output_tokens) - 6, 0) | |
# If the first new token is a special token, we can't skip 1 extra token | |
if skip_special_tokens and new_token_id in tokenizer.all_special_ids: | |
read_offset = max(len(output_tokens), 0) | |
else: | |
read_offset = max(len(output_tokens) - 1, 0) | |
else: | |
# Put new_token_id in a list so skip_special_tokens is respected | |
new_tokens = tokenizer.convert_ids_to_tokens( | |
[new_token_id], skip_special_tokens=skip_special_tokens) | |
output_tokens = prev_tokens + new_tokens | |
# The prefix text is necessary only to defeat cleanup algorithms in | |
# the decode which decide to add a space or not depending on the | |
# surrounding ids. | |
if tokenizer.is_fast or not tokenizer.get_added_vocab(): | |
prefix_text = tokenizer.convert_tokens_to_string( | |
output_tokens[prefix_offset:read_offset]) | |
new_text = tokenizer.convert_tokens_to_string( | |
output_tokens[prefix_offset:]) | |
else: | |
prefix_text = _convert_tokens_to_string_with_added_encoders( | |
tokenizer, | |
output_tokens[prefix_offset:read_offset], | |
skip_special_tokens=skip_special_tokens, | |
spaces_between_special_tokens=spaces_between_special_tokens, | |
) | |
new_text = _convert_tokens_to_string_with_added_encoders( | |
tokenizer, | |
output_tokens[prefix_offset:], | |
skip_special_tokens=skip_special_tokens, | |
spaces_between_special_tokens=spaces_between_special_tokens, | |
) | |
if len(new_text) > len(prefix_text) and not new_text.endswith("�"): | |
# utf-8 char at the end means it's a potential unfinished byte sequence | |
# from byte fallback tokenization. | |
# If it's in the middle, it's probably a real invalid id generated | |
# by the model | |
new_text = new_text[len(prefix_text):] | |
return new_tokens, new_text, read_offset, len(output_tokens) | |
else: | |
return new_tokens, "", prefix_offset, read_offset | |