buelfhood commited on
Commit
064d13d
·
verified ·
1 Parent(s): 685453f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -11
app.py CHANGED
@@ -34,18 +34,20 @@ with gr.Blocks() as demo:
34
  code1 = gr.Textbox(label="Code 1")
35
  code2 = gr.Textbox(label="Code 2")
36
 
37
- # Accordion for weights and models
38
- with gr.Accordion("Weights and Models", open=False):
39
- Ws = gr.Slider(0, 1, value=0.7, label="Semantic Search Weight", step=0.1)
40
- Wl = gr.Slider(0, 1, value=0.3, label="Levenshiern Distance Weight", step=0.1)
41
- Wj = gr.Slider(0, 1, value=0.0, label="Jaro Winkler Weight", step=0.1)
42
- model_dropdown = HuggingfaceHubSearch(
43
  label="Pre-Trained Model to use for Embeddings",
44
  placeholder="Search for Pre-Trained models on Hugging Face",
45
  search_type="model",
46
  #value = "huggingface/CodeBERTa-small-v1"
47
  )
48
 
 
 
 
 
 
 
 
49
  # Output component
50
  output = gr.Textbox(label="Similarity Score")
51
 
@@ -69,16 +71,18 @@ with gr.Blocks() as demo:
69
  # File uploader component
70
  file_uploader = gr.File(label="Upload a Zip file",file_types=[".zip"])
71
 
72
- with gr.Accordion("Weights and Models", open=False):
73
- Ws = gr.Slider(0, 1, value=0.7, label="Semantic Search Weight", step=0.1)
74
- Wl = gr.Slider(0, 1, value=0.3, label="Levenshiern Distance Weight", step=0.1)
75
- Wj = gr.Slider(0, 1, value=0.0, label="Jaro Winkler Weight", step=0.1)
76
- model_dropdown = HuggingfaceHubSearch(
77
  label="Pre-Trained Model to use for Embeddings",
78
  placeholder="Search for Pre-Trained models on Hugging Face",
79
  search_type="model",
80
  #value = "huggingface/CodeBERTa-small-v1"
81
  )
 
 
 
 
 
 
82
  threshold = gr.Slider(0, 1, value=0, label="Threshold", step=0.01)
83
  number_results = gr.Slider(1, 1000, value=10, label="Number of Returned pairs", step=1)
84
 
 
34
  code1 = gr.Textbox(label="Code 1")
35
  code2 = gr.Textbox(label="Code 2")
36
 
37
+ model_dropdown = HuggingfaceHubSearch(
 
 
 
 
 
38
  label="Pre-Trained Model to use for Embeddings",
39
  placeholder="Search for Pre-Trained models on Hugging Face",
40
  search_type="model",
41
  #value = "huggingface/CodeBERTa-small-v1"
42
  )
43
 
44
+ # Accordion for weights and models
45
+ with gr.Accordion("Weights and Models", open=False):
46
+ Ws = gr.Slider(0, 1, value=0.7, label="Semantic Search Weight", step=0.1)
47
+ Wl = gr.Slider(0, 1, value=0.3, label="Levenshiern Distance Weight", step=0.1)
48
+ Wj = gr.Slider(0, 1, value=0.0, label="Jaro Winkler Weight", step=0.1)
49
+
50
+
51
  # Output component
52
  output = gr.Textbox(label="Similarity Score")
53
 
 
71
  # File uploader component
72
  file_uploader = gr.File(label="Upload a Zip file",file_types=[".zip"])
73
 
74
+ model_dropdown = HuggingfaceHubSearch(
 
 
 
 
75
  label="Pre-Trained Model to use for Embeddings",
76
  placeholder="Search for Pre-Trained models on Hugging Face",
77
  search_type="model",
78
  #value = "huggingface/CodeBERTa-small-v1"
79
  )
80
+
81
+ with gr.Accordion("Weights and Models", open=False):
82
+ Ws = gr.Slider(0, 1, value=0.7, label="Semantic Search Weight", step=0.1)
83
+ Wl = gr.Slider(0, 1, value=0.3, label="Levenshiern Distance Weight", step=0.1)
84
+ Wj = gr.Slider(0, 1, value=0.0, label="Jaro Winkler Weight", step=0.1)
85
+
86
  threshold = gr.Slider(0, 1, value=0, label="Threshold", step=0.01)
87
  number_results = gr.Slider(1, 1000, value=10, label="Number of Returned pairs", step=1)
88