Update app.py
Browse files
app.py
CHANGED
@@ -34,18 +34,20 @@ with gr.Blocks() as demo:
|
|
34 |
code1 = gr.Textbox(label="Code 1")
|
35 |
code2 = gr.Textbox(label="Code 2")
|
36 |
|
37 |
-
|
38 |
-
with gr.Accordion("Weights and Models", open=False):
|
39 |
-
Ws = gr.Slider(0, 1, value=0.7, label="Semantic Search Weight", step=0.1)
|
40 |
-
Wl = gr.Slider(0, 1, value=0.3, label="Levenshiern Distance Weight", step=0.1)
|
41 |
-
Wj = gr.Slider(0, 1, value=0.0, label="Jaro Winkler Weight", step=0.1)
|
42 |
-
model_dropdown = HuggingfaceHubSearch(
|
43 |
label="Pre-Trained Model to use for Embeddings",
|
44 |
placeholder="Search for Pre-Trained models on Hugging Face",
|
45 |
search_type="model",
|
46 |
#value = "huggingface/CodeBERTa-small-v1"
|
47 |
)
|
48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
# Output component
|
50 |
output = gr.Textbox(label="Similarity Score")
|
51 |
|
@@ -69,16 +71,18 @@ with gr.Blocks() as demo:
|
|
69 |
# File uploader component
|
70 |
file_uploader = gr.File(label="Upload a Zip file",file_types=[".zip"])
|
71 |
|
72 |
-
|
73 |
-
Ws = gr.Slider(0, 1, value=0.7, label="Semantic Search Weight", step=0.1)
|
74 |
-
Wl = gr.Slider(0, 1, value=0.3, label="Levenshiern Distance Weight", step=0.1)
|
75 |
-
Wj = gr.Slider(0, 1, value=0.0, label="Jaro Winkler Weight", step=0.1)
|
76 |
-
model_dropdown = HuggingfaceHubSearch(
|
77 |
label="Pre-Trained Model to use for Embeddings",
|
78 |
placeholder="Search for Pre-Trained models on Hugging Face",
|
79 |
search_type="model",
|
80 |
#value = "huggingface/CodeBERTa-small-v1"
|
81 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
threshold = gr.Slider(0, 1, value=0, label="Threshold", step=0.01)
|
83 |
number_results = gr.Slider(1, 1000, value=10, label="Number of Returned pairs", step=1)
|
84 |
|
|
|
34 |
code1 = gr.Textbox(label="Code 1")
|
35 |
code2 = gr.Textbox(label="Code 2")
|
36 |
|
37 |
+
model_dropdown = HuggingfaceHubSearch(
|
|
|
|
|
|
|
|
|
|
|
38 |
label="Pre-Trained Model to use for Embeddings",
|
39 |
placeholder="Search for Pre-Trained models on Hugging Face",
|
40 |
search_type="model",
|
41 |
#value = "huggingface/CodeBERTa-small-v1"
|
42 |
)
|
43 |
|
44 |
+
# Accordion for weights and models
|
45 |
+
with gr.Accordion("Weights and Models", open=False):
|
46 |
+
Ws = gr.Slider(0, 1, value=0.7, label="Semantic Search Weight", step=0.1)
|
47 |
+
Wl = gr.Slider(0, 1, value=0.3, label="Levenshiern Distance Weight", step=0.1)
|
48 |
+
Wj = gr.Slider(0, 1, value=0.0, label="Jaro Winkler Weight", step=0.1)
|
49 |
+
|
50 |
+
|
51 |
# Output component
|
52 |
output = gr.Textbox(label="Similarity Score")
|
53 |
|
|
|
71 |
# File uploader component
|
72 |
file_uploader = gr.File(label="Upload a Zip file",file_types=[".zip"])
|
73 |
|
74 |
+
model_dropdown = HuggingfaceHubSearch(
|
|
|
|
|
|
|
|
|
75 |
label="Pre-Trained Model to use for Embeddings",
|
76 |
placeholder="Search for Pre-Trained models on Hugging Face",
|
77 |
search_type="model",
|
78 |
#value = "huggingface/CodeBERTa-small-v1"
|
79 |
)
|
80 |
+
|
81 |
+
with gr.Accordion("Weights and Models", open=False):
|
82 |
+
Ws = gr.Slider(0, 1, value=0.7, label="Semantic Search Weight", step=0.1)
|
83 |
+
Wl = gr.Slider(0, 1, value=0.3, label="Levenshiern Distance Weight", step=0.1)
|
84 |
+
Wj = gr.Slider(0, 1, value=0.0, label="Jaro Winkler Weight", step=0.1)
|
85 |
+
|
86 |
threshold = gr.Slider(0, 1, value=0, label="Threshold", step=0.01)
|
87 |
number_results = gr.Slider(1, 1000, value=10, label="Number of Returned pairs", step=1)
|
88 |
|