Spaces:
Configuration error
Configuration error
File size: 15,184 Bytes
a8b660a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 |
import streamlit as st
from plotly import graph_objs as go
import pandas as pd
from pandas.core.groupby.groupby import DataError
from pytrends.request import TrendReq
from datetime import datetime, timedelta, date
import numpy as np
from plotly.subplots import make_subplots
from metodos import colores_corporativos
import pybase64 as base64
import io
from logs_portal import log
from Scheduler import Scheduler_Covid as sc
import os
def button_style():
style_button = """
<style>
button {
margin-top:-100px;
display: inline-block;
background-color: #e8e8e8;
border-radius: 15px;
border: 4px #cccccc;
color: #4a4a4a;
text-align: center;
font-size: 15px;
padding: 2px;
width: 260px;
transition: all 0.5s;
cursor: pointer;
margin: 5px;
}
button span {
cursor: pointer;
display: inline-block;
position: relative;
transition: 0.5s;
}
button span:after {
content: '\00bb';
position: absolute;
opacity: 0;
top: 0;
right: -20px;
transition: 0.5s;
}
button:hover {
background-color: #bb1114;
color:#e8e8e8;
}
button:hover span {
padding-right: 25px;
}
button:hover span:after {
opacity: 1;
right: 0;
}
</style>
"""
st.markdown(style_button, unsafe_allow_html=True)
def get_table_download_link(df):
"""Generates a link allowing the data in a given panda dataframe to be
downloaded
in: dataframe
out: href string
"""
csv = df.to_csv(index=False)
b64 = base64.b64encode(csv.encode()).decode()
name_arch = "Scoring_filtrado.csv"
name_mark = "Descargar .csv "
style = '"color:black;text-decoration: none;font-size:18px;"'
href = f'<center><a href="data:file/csv;base64,{b64}" style=' + style+' download="'+name_arch+'" ><button>'+name_mark+'</button></a></center>'
return href
def get_table_excel_link(df, name_arch):
towrite = io.BytesIO()
downloaded_file = df.to_excel(towrite, encoding='utf-8', index=False,
header=True)
towrite.seek(0) # reset pointer
file_name = name_arch
style = 'style="color:black;text-decoration: none; font-size:18px;" '
name_mark = "Descargar "+name_arch
b64 = base64.b64encode(towrite.read()).decode() # some strings
linko= f'<center><a href="data:application/vnd.openxmlformats-officedocument.spreadsheetml.sheet;base64,{b64}" '+style+'download="'+file_name+'"><button>'+name_mark+'</button></a></center>'
return linko
@st.cache(show_spinner=True)
def charged_data():
regiones = {}
regiones['Latam'] = ['Argentina', 'Brazil', 'Chile', 'Colombia',
'Mexico', 'Peru']
regiones['Europa'] = ['Italy', 'Spain', 'Germany', 'United Kingdom',
'France']
regiones['Asia Emergente'] = ['South Korea', 'Taiwan', 'Hong Kong',
'India', 'Thailand', 'Indonesia']
regiones['USA'] = ['United States']
data_dict = np.load('Scheduler/dict_movilidad.npy',
allow_pickle='TRUE').item()
return data_dict, regiones
@st.cache(show_spinner=True)
def charged_data2():
covid_data = pd.read_csv('https://covid.ourworldindata.org/data/owid-covid-data.csv')
paises = {'CL': 'Chile', 'AR': 'Argentina', 'BR': 'Brazil',
'MX': 'Mexico'}
covid_data = covid_data.loc[covid_data['location'].isin(paises.values())]
covid_data['date'] = pd.to_datetime(covid_data['date'])
covid_data.set_index(['date', 'location'], inplace=True)
# Creamos diccionario con cada una de las variables para distintos pa铆ses
data_dict = {}
for col in covid_data.columns:
try:
data_dict[col] = covid_data[col].unstack().fillna(0).rolling(1).mean()
except DataError:
pass
# Descargamos la data de google trends
pytrends = TrendReq(retries=5, backoff_factor=0.2,
requests_args={'verify': False})
start = (datetime.today() - timedelta(180)).strftime("%Y-%m-%d")
start = datetime(2020, 2, 1).strftime("%Y-%m-%d")
end = datetime.today().strftime("%Y-%m-%d")
tf = f'{start} {end}'
kw_lists = {
'CL': ['PCR', 'sintomas covid', 'examen covid',
'covid positivo'],
'AR': ['PCR', 'olfato', 'sintomas covid', 'perdida gusto',
'covid positivo'],
'MX': ['PCR', 'olfato', 'sintomas covid', 'covid positivo',
'perdida gusto'],
'BR': ['PCR', 'sintomas covid', 'exame covid', 'covid positivo']
}
gt_data = {}
for p, kw in kw_lists.items():
pytrends.build_payload(kw, timeframe=tf, geo=p)
df = pytrends.interest_over_time().drop(columns='isPartial')
gt_data[paises[p]] = df.div(df.mean(0).values)
data_dict['GT Index'] = pd.DataFrame({p: gt_data[p].mean(1).rolling(1).mean()
for p in gt_data.keys()})
return data_dict, paises
@log
def Movilidad():
largo = 400
ancho = 550
button_style()
placebar = st.empty()
percent_complete = 0
my_bar = placebar.progress(percent_complete)
data_cargada = charged_data()
data_dict = data_cargada[0]
regiones = data_cargada[1]
europa = data_dict['Mobility Index'][regiones.keys()]["Europa"]
latam = data_dict['Mobility Index'][regiones.keys()]["Latam"]
asia = data_dict['Mobility Index'][regiones.keys()]["Asia Emergente"]
USA = data_dict['Mobility Index'][regiones.keys()]["USA"]
mov_region = data_dict['Mobility Index'][regiones.keys()][["USA", "Europa","Asia Emergente", "Latam"]]
percent_complete = percent_complete+33
placebar.progress(percent_complete)
colores = list(colores_corporativos().values())
colores2 = []
for i in range(len(colores)):
colores2.append("rgb"+str(colores[i]))
def plot_raw_data():
fig = go.Figure()
europa_ = go.Scatter(x=europa.index, y=europa.values, name="Europa",
line=dict(color=colores2[0]))
latam_ = go.Scatter(x=latam.index, y=latam.values, name="Latam",
line=dict(color=colores2[1]))
USA_ = go.Scatter(x=USA.index, y=USA.values, name="USA",
line=dict(color=colores2[2]))
asia_ = go.Scatter(x=asia.index, y=asia.values, name="Asia Emergente",
line=dict(color=colores2[3]))
fig.add_trace(europa_)
fig.add_trace(latam_)
fig.add_trace(USA_)
fig.add_trace(asia_)
fig.layout.update(title_text="Evoluci贸n por region",
xaxis_rangeslider_visible=True,
margin_b=20,
margin_r=20,
margin_l=20,
width=ancho,
height=largo,
legend=dict(orientation="h",
yanchor="bottom",
y=1.02,
xanchor="right",
x=1))
fig2 = go.Figure()
i = 0
for pais in regiones["Latam"]:
data_pais = data_dict['Mobility Index'][regiones['Latam']][pais]
pais_gr = go.Scatter(x=data_pais.index,
y=data_pais.values, name=pais,
line=dict(color=colores2[i]))
fig2.add_trace(pais_gr)
i = i+1
fig2.layout.update(title_text="Evoluci贸n LATAM",
xaxis_rangeslider_visible=True, margin_b=20,
margin_r=20,margin_l=20,
width=ancho, height=largo,
legend=dict(orientation="h",
yanchor="bottom",
y=1.0,
xanchor="right",
x=1))
col1, col2 = st.columns(2)
col1.plotly_chart(fig, use_container_width=True)
col2.plotly_chart(fig2, use_container_width=True)
link_excel_1 = get_table_excel_link(data_dict['Mobility Index'][regiones['Latam']], "Movilidad Latam.xlsx")
link_excel_2 = get_table_excel_link(mov_region, "Movilidad por region.xlsx")
col1.markdown(link_excel_1, unsafe_allow_html=True)
col2.markdown(link_excel_2, unsafe_allow_html=True)
percent_complete = percent_complete + 33
placebar.progress(percent_complete)
placebar.empty()
plot_raw_data()
percent_complete = percent_complete + 34
my_bar.progress(percent_complete)
my_bar.empty()
data_desag = pd.read_excel("Scheduler/Movilidad_desagrada.xlsx",
engine="openpyxl")
st.markdown(get_table_excel_link(data_desag, "Movilidad desagregada.xlsx"),
unsafe_allow_html=True)
try:
user = os.getlogin()
if user == 'bullm':
act = st.button('Actualizar')
if act:
sc.run_data_covid()
ud = pd.read_excel('Data/update_data.xlsx')
ud = ud[ud['View'] != 'Covid19']
today = date.today().strftime('%d-%m-%Y')
ud = ud.append({"View": "Covid19",
"Last_Update": today}, ignore_index=True)
ud.to_excel('Data/update_data.xlsx', index=False)
except Exception:
pass
@log
def Correlacion_GT():
largo = 400
ancho = 550
button_style()
# Cargamos la data relevante
percent_complete = 0
my_bar = st.progress(percent_complete)
percent_complete = percent_complete + 33
my_bar.progress(percent_complete)
data_cargada = charged_data2()
data_dict = data_cargada[0]
paises = data_cargada[1]
corr_df = pd.DataFrame(index=paises.values(), columns=np.arange(-3, 1))
percent_complete = percent_complete + 33
my_bar.progress(percent_complete)
i = 0
cols = st.columns(2)
col1, col2, col3, col4 = st.columns((1.5, 7, 2, 7))
for p in corr_df.index:
df = pd.concat([data_dict['GT Index'][p],
data_dict['new_cases_per_million'][p]],
axis=1).dropna()
df.columns = ['GT Index', 'Nuevos Casos Confirmados']
fig = make_subplots(specs=[[{"secondary_y": True}]])
CC = go.Scatter(x=df['GT Index'].index,
y=df['GT Index'].values, name='GT index',
line=dict(color='dimgrey'))
GT = go.Scatter(x=df['Nuevos Casos Confirmados'].index,
y=df['Nuevos Casos Confirmados'].values,
name='Casos confirmados', line=dict(color='darkred'))
fig.add_trace(CC, secondary_y=False,)
fig.add_trace(GT, secondary_y=True,)
fig.layout.update(title_text="Evoluci贸n {}".format(p),
xaxis_rangeslider_visible=True, margin_b=20,
margin_r=20, margin_l=20,
width=ancho, height=largo,
legend=dict(orientation="h",
yanchor="bottom",
y=1.02,
xanchor="right",
x=1))
link_excel = get_table_excel_link(df, "Correlacion GT.xlsx")
if i % 2 == 0:
cols[0].plotly_chart(fig, use_container_width=True)
cols[0].markdown(link_excel, unsafe_allow_html=True)
else:
cols[1].plotly_chart(fig, use_container_width=True)
cols[1].markdown(link_excel, unsafe_allow_html=True)
cols = st.columns(2)
col1, col2, col3, col4 = st.columns((1.5, 7, 2, 7))
i = i + 1
percent_complete = percent_complete + 34
my_bar.progress(percent_complete)
my_bar.empty()
@log
def vacunas():
largo = 400
ancho = 550
button_style()
vac_data = pd.read_csv('https://covid.ourworldindata.org/data/owid-covid-data.csv').set_index(['date','location'])
country_pop = (vac_data['population'].reset_index().set_index('location')
.drop(columns='date').squeeze().drop_duplicates())
min_pop = 1000000
idx = country_pop[country_pop > min_pop].index
vac_data = vac_data['total_vaccinations_per_hundred'].unstack().ffill().fillna(0)
vac_data.index = pd.to_datetime(vac_data.index)
N = 15
top_vac = vac_data[idx].iloc[-1].nlargest(N).sort_values()
regiones = {}
regiones['Latam'] = ['Argentina', 'Brazil', 'Chile', 'Colombia',
'Mexico', 'Peru']
regiones['Europa'] = ['Italy', 'Spain', 'Germany', 'United Kingdom',
'France', 'Russia']
regiones['Asia Emergente'] = ['South Korea', 'Taiwan', 'Hong Kong',
'China', 'Japan']
regiones['Norteam茅rica'] = ['United States', 'Canada']
inicio = datetime(2020, 11, 15)
vac_data = vac_data.loc[vac_data.index > inicio].resample('W').last()
vac_data.index.name = ''
colores = colores_corporativos().values()
colores = list(colores_corporativos().values())
colores2 = []
for i in range(len(colores)):
colores2.append("rgb"+str(colores[i]))
def plot_raw_data():
i = 0
cols = st.columns(2)
col1, col2, col3, col4 = st.columns((1.5, 7, 2, 7))
for region in list(regiones.keys()):
fig = go.Figure()
j = 0
for pais in regiones[region]:
data_pais = vac_data[regiones[region]][pais]
pais_gr = go.Scatter(x=data_pais.index,
y=data_pais.values, name=pais,
line=dict(color=colores2[j]))
fig.add_trace(pais_gr)
j = j+1
fig.layout.update(title_text="Evoluci贸n "+region,
xaxis_rangeslider_visible=True, height=largo,
width=ancho, margin_b=20,
legend=dict(orientation="h",
yanchor="bottom",
y=1.0,
xanchor="right",
x=1))
link_excel = get_table_excel_link(data_pais, "Vacunacion.xlsx")
if i % 2 == 0:
cols[0].plotly_chart(fig, use_column_width=True)
cols[0].markdown(link_excel, unsafe_allow_html=True)
else:
cols[1].plotly_chart(fig, use_column_width=True)
cols[1].markdown(link_excel, unsafe_allow_html=True)
cols = st.columns(2)
col1, col2, col3, col4 = st.columns((1.5, 7, 2, 7))
i = i+1
plot_raw_data()
|