|
|
|
import os |
|
import threading |
|
|
|
|
|
import gradio as gr |
|
from peft import PeftModel |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer |
|
|
|
HF_TOKEN = os.getenv("HF_TOKEN") |
|
|
|
tokenizer = AutoTokenizer.from_pretrained( |
|
"bunyaminergen/Qwen2.5-Coder-1.5B-Instruct-Reasoning", |
|
token=HF_TOKEN, |
|
trust_remote_code=True |
|
) |
|
|
|
base_model = AutoModelForCausalLM.from_pretrained( |
|
"Qwen/Qwen2.5-Coder-1.5B-Instruct", |
|
device_map="auto", |
|
torch_dtype="auto", |
|
token=HF_TOKEN |
|
) |
|
|
|
base_model.resize_token_embeddings(len(tokenizer)) |
|
|
|
model = PeftModel.from_pretrained( |
|
base_model, |
|
"bunyaminergen/Qwen2.5-Coder-1.5B-Instruct-Reasoning", |
|
token=HF_TOKEN |
|
) |
|
model.eval() |
|
|
|
|
|
def respond( |
|
message: str, |
|
history: list[tuple[str, str]], |
|
system_message: str, |
|
max_tokens: int, |
|
temperature: float, |
|
top_p: float, |
|
): |
|
messages = [{"role": "system", "content": system_message}] |
|
for u, a in history: |
|
if u: |
|
messages.append({"role": "user", "content": u}) |
|
if a: |
|
messages.append({"role": "assistant", "content": a}) |
|
messages.append({"role": "user", "content": message}) |
|
|
|
prompt = tokenizer.apply_chat_template( |
|
messages, tokenize=False, add_generation_prompt=True |
|
) |
|
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) |
|
|
|
streamer = TextIteratorStreamer( |
|
tokenizer, |
|
timeout=600.0, |
|
skip_prompt=True, |
|
skip_special_tokens=True |
|
) |
|
generation_kwargs = { |
|
**inputs, |
|
"max_new_tokens": max_tokens, |
|
"temperature": temperature, |
|
"top_p": top_p, |
|
"streamer": streamer, |
|
} |
|
thread = threading.Thread(target=model.generate, kwargs=generation_kwargs) |
|
thread.start() |
|
|
|
output = "" |
|
for chunk in streamer: |
|
output += chunk |
|
yield output |
|
|
|
|
|
demo = gr.ChatInterface( |
|
respond, |
|
additional_inputs=[ |
|
gr.Textbox(value="You are a helpful coding assistant.", label="System message"), |
|
gr.Slider(minimum=512, maximum=8192, value=2048, step=1, label="Max new tokens"), |
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), |
|
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), |
|
], |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|