File size: 5,356 Bytes
6df5c93
 
 
df2b26b
6df5c93
 
21b7541
fcfb36c
125fa0c
 
f356efb
6df5c93
 
 
 
ebd0b92
6df5c93
 
 
 
ebd0b92
 
0b47392
6df5c93
c7fa549
6df5c93
ebd0b92
 
 
f79e678
0ae54ee
f356efb
0ae54ee
ebd0b92
0ae54ee
 
f356efb
0ae54ee
a74f77b
da0c2cc
d8207a8
f356efb
d8207a8
 
f356efb
cbd9da8
34ce225
d8207a8
 
5cebc05
d8207a8
 
2c0c1cb
 
 
 
 
d8207a8
 
 
 
 
 
 
 
6df5c93
31d2d4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cebc05
31d2d4e
 
 
 
 
 
 
 
 
 
d8207a8
 
5cebc05
8c715b2
d8207a8
 
aace96d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c715b2
31d2d4e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import os
import json
import gradio as gr
import streamlit as st
from huggingface_hub import HfApi, login
from dotenv import load_dotenv

from llm import get_groq_llm
from vectorstore import get_chroma_vectorstore
from embeddings import get_SFR_Code_embedding_model
from kadiApy_ragchain import KadiApyRagchain

# Load environment variables from .env file
load_dotenv()

vectorstore_path = "data/vectorstore"

GROQ_API_KEY = os.environ["GROQ_API_KEY"]
HF_TOKEN = os.environ["HF_Token"]

with open("config.json", "r") as file:
    config = json.load(file)

login(HF_TOKEN)
hf_api = HfApi()

# Access the values
LLM_MODEL_NAME = config["llm_model_name"]
LLM_MODEL_TEMPERATURE = float(config["llm_model_temperature"])

def initialize():
    global kadiAPY_ragchain

    vectorstore = get_chroma_vectorstore(get_SFR_Code_embedding_model(), vectorstore_path)
    llm = get_groq_llm(LLM_MODEL_NAME, LLM_MODEL_TEMPERATURE, GROQ_API_KEY)

    kadiAPY_ragchain = KadiApyRagchain(llm, vectorstore)

initialize()



def bot_kadi(history):
    user_query = history[-1][0]   
    response = kadiAPY_ragchain.process_query(user_query)
    history[-1] = (user_query, response)

    yield history  



# Gradio utils
def check_input_text(text):
    if not text:
        gr.Warning("Please input a question.")
        raise TypeError
    return True

def add_text(history, text):
    history = history + [(text, None)]
    yield history, ""


import gradio as gr

def main():
    with gr.Blocks() as demo:
        gr.Markdown("## KadiAPY - AI Coding-Assistant")
        gr.Markdown("AI assistant for KadiAPY based on RAG architecture powered by LLM")

        with gr.Tab("KadiAPY - AI Assistant"):
            with gr.Row():
                with gr.Column(scale=10):
                    chatbot = gr.Chatbot([], elem_id="chatbot", label="Kadi Bot", bubble_full_width=False, show_copy_button=True, height=600)
                    user_txt = gr.Textbox(label="Question", placeholder="Type in your question and press Enter or click Submit")

                    with gr.Row():
                        with gr.Column(scale=1):
                            submit_btn = gr.Button("Submit", variant="primary")
                        with gr.Column(scale=1):
                            clear_btn = gr.Button("Clear", variant="stop")

                    gr.Examples(
                        examples=[
                            "Write me a python script with which can convert plain JSON to a Kadi4Mat-compatible extra metadata structure",
                            "I need a method to upload a file to a record. The id of the record is 3",
                        ],
                        inputs=user_txt,
                        outputs=chatbot,
                        fn=add_text,
                        label="Try asking...",
                        cache_examples=False,
                        examples_per_page=3,
                    )

            user_txt.submit(check_input_text, user_txt, None).success(add_text, [chatbot, user_txt], [chatbot, user_txt]).then(bot_kadi, [chatbot], [chatbot])
            submit_btn.click(check_input_text, user_txt, None).success(add_text, [chatbot, user_txt], [chatbot, user_txt]).then(bot_kadi, [chatbot], [chatbot])
            clear_btn.click(lambda: None, None, chatbot, queue=False)

    demo.launch() 


import gradio as gr

def add_text_to_chatbot(chat_history, user_input):
    if user_input:
        chat_history.append(("You", user_input))
        response = "This is a placeholder response. Replace this with your AI logic."
        chat_history.append(("Kadi Bot", response))
    return chat_history, ""

def main():
    with gr.Blocks() as demo:
        gr.Markdown("## KadiAPY - AI Coding-Assistant")
        gr.Markdown("AI assistant for KadiAPY based on RAG architecture powered by LLM")

        with gr.Tab("KadiAPY - AI Assistant"):
            with gr.Row():
                with gr.Column(scale=10):
                    chatbot = gr.Chatbot([], elem_id="chatbot", label="Kadi Bot", bubble_full_width=False, show_copy_button=True, height=600)
                    user_txt = gr.Textbox(label="Question", placeholder="Type in your question and press Enter or click Submit")

                    with gr.Row():
                        with gr.Column(scale=1):
                            submit_btn = gr.Button("Submit", variant="primary")
                        with gr.Column(scale=1):
                            clear_btn = gr.Button("Clear", variant="stop")

                    gr.Examples(
                        examples=[
                            "Write me a python script with which can convert plain JSON to a Kadi4Mat-compatible extra metadata structure",
                            "I need a method to upload a file to a record. The id of the record is 3",
                        ],
                        inputs=user_txt,
                        outputs=chatbot,
                        fn=add_text_to_chatbot,
                        label="Try asking...",
                        cache_examples=False,
                        examples_per_page=3,
                    )

        submit_btn.click(add_text_to_chatbot, [chatbot, user_txt], [chatbot, user_txt])
        clear_btn.click(lambda: ([], ""), None, [chatbot, user_txt])

    demo.launch()

if __name__ == "__main__":
    main()