Spaces:
Sleeping
Sleeping
File size: 3,534 Bytes
6df5c93 df2b26b 6df5c93 21b7541 fcfb36c 125fa0c f356efb 6df5c93 ebd0b92 6df5c93 ebd0b92 0b47392 6df5c93 c7fa549 6df5c93 ebd0b92 f79e678 0ae54ee f356efb 0ae54ee ebd0b92 0ae54ee f356efb 0ae54ee a74f77b da0c2cc d8207a8 f356efb 369be0e f356efb 369be0e 34ce225 7bd6818 d8207a8 5cebc05 aace96d 54aec66 7bd6818 98397d1 e2e1781 4508a9a aace96d 4508a9a aace96d 4508a9a aace96d 4508a9a aace96d 4508a9a e2e1781 4508a9a aace96d 4508a9a 8c715b2 31d2d4e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
import os
import json
import gradio as gr
import streamlit as st
from huggingface_hub import HfApi, login
from dotenv import load_dotenv
from llm import get_groq_llm
from vectorstore import get_chroma_vectorstore
from embeddings import get_SFR_Code_embedding_model
from kadiApy_ragchain import KadiApyRagchain
# Load environment variables from .env file
load_dotenv()
vectorstore_path = "data/vectorstore"
GROQ_API_KEY = os.environ["GROQ_API_KEY"]
HF_TOKEN = os.environ["HF_Token"]
with open("config.json", "r") as file:
config = json.load(file)
login(HF_TOKEN)
hf_api = HfApi()
# Access the values
LLM_MODEL_NAME = config["llm_model_name"]
LLM_MODEL_TEMPERATURE = float(config["llm_model_temperature"])
def initialize():
global kadiAPY_ragchain
vectorstore = get_chroma_vectorstore(get_SFR_Code_embedding_model(), vectorstore_path)
llm = get_groq_llm(LLM_MODEL_NAME, LLM_MODEL_TEMPERATURE, GROQ_API_KEY)
kadiAPY_ragchain = KadiApyRagchain(llm, vectorstore)
initialize()
def bot_kadi(chat_history):
user_query = chat_history[-1][0]
response = kadiAPY_ragchain.process_query(user_query)
chat_history[-1] = (user_query, response)
return chat_history
import gradio as gr
def add_text_to_chatbot(chat_history, user_input):
chat_history = chat_history + [(user_input, None)]
return chat_history, ""
def show_history(chat_history):
return chat_history
def main():
with gr.Blocks() as demo:
gr.Markdown("## KadiAPY - AI Coding-Assistant")
gr.Markdown("AI assistant for KadiAPY based on RAG architecture powered by LLM")
# Create a state for session management
chat_history = gr.State([])
with gr.Tab("KadiAPY - AI Assistant"):
with gr.Row():
with gr.Column(scale=10):
chatbot = gr.Chatbot([], elem_id="chatbot", label="Kadi Bot", bubble_full_width=False, show_copy_button=True, height=600)
user_txt = gr.Textbox(label="Question", placeholder="Type in your question and press Enter or click Submit")
with gr.Row():
with gr.Column(scale=1):
submit_btn = gr.Button("Submit", variant="primary")
with gr.Column(scale=1):
clear_btn = gr.Button("Clear", variant="stop")
gr.Examples(
examples=[
"Write me a python script with which can convert plain JSON to a Kadi4Mat-compatible extra metadata structure",
"I need a method to upload a file to a record. The id of the record is 3",
],
inputs=user_txt,
outputs=chatbot,
fn=add_text_to_chatbot,
label="Try asking...",
cache_examples=False,
examples_per_page=3,
)
# Use the state to persist chat history between interactions
submit_btn.click(add_text_to_chatbot, [chat_history, user_txt], [chat_history, user_txt]).then(show_history,[chat_history], [chatbot])\
.then(bot_kadi, [chat_history], [chatbot])
clear_btn.click(lambda: ([], ""), None, [chat_history, chatbot, user_txt])
demo.launch()
if __name__ == "__main__":
main()
if __name__ == "__main__":
main() |