Spaces:
Sleeping
Sleeping
import os | |
import json | |
import gradio as gr | |
import zipfile | |
import tempfile | |
import requests | |
import urllib.parse | |
import io | |
from huggingface_hub import HfApi, login | |
from PyPDF2 import PdfReader | |
from langchain_huggingface import HuggingFaceEmbeddings | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain_groq import ChatGroq | |
from dotenv import load_dotenv | |
from langchain.docstore.document import Document | |
from langchain.schema import Document | |
from chunk_python_code import chunk_python_code_with_metadata | |
from vectorstore import get_chroma_vectorstore | |
# Load environment variables from .env file | |
load_dotenv() | |
# Load configuration from JSON file | |
with open('config.json') as config_file: | |
config = json.load(config_file) | |
with open("config2.json", "r") as file: | |
config2 = json.load(file) | |
PERSIST_DOC_DIRECTORY = config["persist_doc_directory"] | |
PERSIST_CODE_DIRECTORY =config["persist_code_directory"] | |
CHUNK_SIZE = config["chunk_size"] | |
CHUNK_OVERLAP = config["chunk_overlap"] | |
EMBEDDING_MODEL_NAME = config["embedding_model"] | |
LLM_MODEL_NAME = config["llm_model"] | |
LLM_TEMPERATURE = config["llm_temperature"] | |
GITLAB_API_URL = config["gitlab_api_url"] | |
HF_SPACE_NAME = config["hf_space_name"] | |
DATA_DIR = config["data_dir"] | |
GROQ_API_KEY = os.environ["GROQ_API_KEY"] | |
HF_TOKEN = os.environ["HF_Token"] | |
login(HF_TOKEN) | |
api = HfApi() | |
def load_project_id(json_file): | |
with open(json_file, 'r') as f: | |
data = json.load(f) | |
return data['project_id'] | |
def download_gitlab_project_by_version(): | |
try: | |
# Load the configuration from config.json | |
# Extract GitLab project information from the config | |
api_url = config2['gitlab']['api_url'] | |
project_id = urllib.parse.quote(config2['gitlab']['project']['id'], safe="") | |
version = config2['gitlab']['project']['version'] | |
# Construct the URL for the release's zip file | |
url = f"{api_url}/projects/{project_id}/repository/archive.zip?sha={version}" | |
# Send GET request to download the zip file | |
response = requests.get(url, stream=True) | |
archive_bytes = io.BytesIO(response.content) | |
if response.status_code == 200: | |
# Extract filename from content-disposition header | |
content_disposition = response.headers.get("content-disposition") | |
if content_disposition and "filename=" in content_disposition: | |
filename = content_disposition.split("filename=")[-1].strip('"') | |
# test | |
# target_path = f"{DATA_DIR}/{filename}" | |
# Check if the request was successful | |
if response.status_code == 200: | |
api.upload_file( | |
path_or_fileobj= archive_bytes, | |
path_in_repo= f"{DATA_DIR}/{filename}", | |
repo_id=HF_SPACE_NAME, | |
repo_type='space' | |
) | |
print(f"Release {version} downloaded successfully as {file_path}.") | |
else: | |
print(f"Failed to download the release: {response.status_code} - {response.reason}") | |
print(response.text) | |
except FileNotFoundError: | |
print("The config.json file was not found. Please ensure it exists in the project directory.") | |
except json.JSONDecodeError: | |
print("Failed to parse the config.json file. Please ensure it contains valid JSON.") | |
except Exception as e: | |
print(f"An error occurred: {e}") | |
def download_gitlab_repo(): | |
print("Start the upload_gitRepository function") | |
project_id = load_project_id('repository_ids.json') | |
encoded_project_id = urllib.parse.quote_plus(project_id) | |
# Define the URL to download the repository archive | |
archive_url = f"{GITLAB_API_URL}/projects/{encoded_project_id}/repository/archive.zip" | |
# Download the repository archive | |
response = requests.get(archive_url) | |
archive_bytes = io.BytesIO(response.content) | |
# Retrieve the original file name from the response headers | |
content_disposition = response.headers.get('content-disposition') | |
if content_disposition: | |
filename = content_disposition.split('filename=')[-1].strip('\"') | |
else: | |
filename = 'archive.zip' # Fallback to a default name if not found | |
# Check if the file already exists in the repository | |
existing_files = api.list_repo_files(repo_id=HF_SPACE_NAME, repo_type='space') | |
target_path = f"{DATA_DIR}/{filename}" | |
print(f"Target Path: '{target_path}'") | |
print(f"Existing Files: {[repr(file) for file in existing_files]}") | |
if target_path in existing_files: | |
print(f"File '{target_path}' already exists in the repository. Skipping upload...") | |
else: | |
# Upload the ZIP file to the new folder in the Hugging Face space repository | |
print("Uploading File to directory:") | |
print(f"Archive Bytes: {repr(archive_bytes.getvalue())[:100]}") # Show a preview of bytes | |
print(f"Target Path in Repo: '{target_path}'") | |
api.upload_file( | |
path_or_fileobj=archive_bytes, | |
path_in_repo=target_path, | |
repo_id=HF_SPACE_NAME, | |
repo_type='space' | |
) | |
print("Upload complete") | |
def get_all_files_in_folder(temp_dir, folder_path): | |
all_files = [] | |
target_dir = os.path.join(temp_dir, folder_path) | |
for root, dirs, files in os.walk(target_dir): | |
print(f"Files in current directory ({root}): {files}") | |
for file in files: | |
print(f"Processing file: {file}") | |
all_files.append(os.path.join(root, file)) | |
return all_files | |
def get_file(temp_dir, file_path): | |
full_path = os.path.join(temp_dir, file_path) | |
return full_path | |
def process_directory(directory, folder_paths, file_paths): | |
all_texts = [] | |
file_references = [] | |
zip_filename = next((file for file in os.listdir(directory) if file.endswith('.zip')), None) | |
zip_file_path = os.path.join(directory, zip_filename) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
# Unzip the file into the temporary directory | |
with zipfile.ZipFile(zip_file_path, 'r') as zip_ref: | |
zip_ref.extractall(tmpdirname) | |
files = [] | |
print("tmpdirname: " , tmpdirname) | |
unzipped_root = os.listdir(tmpdirname) | |
print("unzipped_root ", unzipped_root) | |
tmpsubdirpath= os.path.join(tmpdirname, unzipped_root[0]) | |
print("tempsubdirpath: ", tmpsubdirpath) | |
if folder_paths: | |
for folder_path in folder_paths: | |
files += get_all_files_in_folder(tmpsubdirpath, folder_path) | |
if file_paths: | |
files += [get_file(tmpsubdirpath, file_path) for file_path in file_paths] | |
print(f"Total number of files: {len(files)}") | |
for file_path in files: | |
# print("111111111:", file_path) | |
file_ext = os.path.splitext(file_path)[1] | |
# print("222222222:", file_ext) | |
if os.path.getsize(file_path) == 0: | |
print(f"Skipping an empty file: {file_path}") | |
continue | |
with open(file_path, 'rb') as f: | |
if file_ext in ['.rst', '.py']: | |
text = f.read().decode('utf-8') | |
all_texts.append(text) | |
print("Filepaths brother:", file_path) | |
relative_path = os.path.relpath(file_path, tmpsubdirpath) | |
print("Relative Filepaths brother:", relative_path) | |
file_references.append(relative_path) | |
return all_texts, file_references | |
def split_python_code_into_chunks(texts, file_paths): | |
chunks = [] | |
for text, file_path in zip(texts, file_paths): | |
document_chunks = chunk_python_code_with_metadata(text, file_path) | |
chunks.extend(document_chunks) | |
return chunks | |
# Split text into chunks | |
def split_into_chunks(texts, references, chunk_size, chunk_overlap): | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap) | |
chunks = [] | |
for text, reference in zip(texts, references): | |
chunks.extend([ | |
Document( | |
page_content=chunk, | |
metadata={ | |
"source": reference, | |
"usage": "doc" | |
} | |
) | |
for chunk in text_splitter.split_text(text) | |
]) | |
return chunks | |
# Setup Vectorstore | |
def embed_documents_into_vectorstore(chunks, model_name, persist_directory): | |
print("Start setup_vectorstore_function") | |
embedding_model = HuggingFaceEmbeddings(model_name=model_name) | |
vectorstore = get_chroma_vectorstore(embedding_model, persist_directory) | |
vectorstore.add_documents(chunks) | |
return vectorstore | |
# Setup LLM | |
def setup_llm(model_name, temperature, api_key): | |
llm = ChatGroq(model=model_name, temperature=temperature, api_key=api_key) | |
return llm | |
def format_kadi_apy_library_context(docs): | |
doc_context = [] | |
for doc in docs: | |
# Extract metadata information | |
class_info = doc.metadata.get("class", "Unknown Class") | |
type_info = doc.metadata.get("type", "Unknown Type") | |
source_info = doc.metadata.get("source", "Unknown Type") | |
# Format metadata and document content | |
# print("YYYYYYYEEEEEEEEEEEEEEE222222222222222222222222222222:}\n\n", doc.page_content) | |
formatted_doc = f"# source: {source_info}\n# class: {class_info}\n# type: {type_info}\n{doc.page_content}\n\n\n" | |
doc_context.append(formatted_doc) | |
return doc_context | |
def format_kadi_api_doc_context(docs): | |
doc_context = [] | |
for doc in docs: | |
source_info = doc.metadata.get("source", "Unknown Type") | |
# print("YYYYYYYEEEEEEEEEEEEEEE:}\n\n", doc.page_content) | |
formatted_doc = f"# source: {source_info}\n{doc.page_content}\n\n\n" | |
doc_context.append(formatted_doc) | |
return doc_context | |
def rag_workflow(query): | |
prompt = ( | |
f"""The query is: '{query}'. | |
Based on the user's query, assist them by determining which technical document they should read to interact with the software named 'Kadi4Mat'. | |
There are three different technical documents to choose from: | |
- Document 1: Provides information on how to use a Python library to interact with the HTTP API of 'Kadi4Mat'. | |
- Document 2: Provides information on how to use a Python library to implement custom CLI commands to interact with 'Kadi4Mat'. | |
Your task is to select the single most likely option. | |
If Document 1 is the best choice, respond with 'kadi-apy python library'. | |
If Document 2 is the best choice, respond with 'kadi-apy python cli library'. | |
Respond with only the exact corresponding option and do not include any additional comments, explanations, or text." | |
""" | |
) | |
library_usage_prediction = llm.predict(prompt) | |
print("METADATA PREDICTION -------------------------:", metadata_prediction) | |
print(metadata_prediction) | |
rewrite_prompt = ( | |
f"""You are an intelligent assistant that helps users rewrite their queries. | |
The vectorstore consists of the source code and documentation of a Python library, which enables users to | |
programmatically interact with a REST-like API of a software system. The library methods have descriptive | |
docstrings. Your task is to rewrite the query in a way that aligns with the language and structure of the | |
library's methods and documentation, ensuring optimal retrieval of relevant information. | |
Guidelines for rewriting the query: | |
1. Identify the main action the user wants to perform (e.g., "Upload a file to a record," "Get users of a group"). | |
2. Remove conversational elements like greetings or pleasantries (e.g., "Hello Chatbot", "I need you to help me with"). | |
3. Exclude specific variable values (e.g., "ID of my record is '31'") unless essential to the intent. | |
4. Rephrase the query to match the format and keywords used in the docstrings, focusing on verbs and objects relevant to the action (e.g., "Add a record to a collection"). | |
5. Given the query the user might need more than one action to achieve his goal. In this case the rewritten query has more than one action. | |
Examples: | |
- User query: "Create a Python script with a method that facilitates the creation of records. This method should accept an array of identifiers as a parameter and allow metadata to be added to each record." | |
- Rewritten query: "create records, add metadata to record" | |
- User query: "Hi, can you help me write Python code to add a record to a collection? The record ID is '45', and the collection ID is '12'." | |
Rewritten query: "add a record to a collection" | |
- User query: I need a python script with which i create a new record with the title: "Hello World" and then link the record to a given collection. | |
Rewritten query: "create a new record with title" , "link a record to a collection" | |
Based on these examples and guidelines, rewrite the following user query to align more effectively with the keywords used in the docstrings. | |
Do not include any addition comments, explanations, or text. | |
Original query: | |
{query} | |
""" | |
) | |
rewritten_query_response = llm.invoke(rewrite_prompt) | |
rewritten_query = rewritten_query_response.content.strip() | |
print("A", metadata_prediction) | |
print(rewritten_query) | |
kadi_apy_docs = vector_store.similarity_search(query, k=5, filter={"usage": "doc"}) | |
kadi_apy_docs = vector_store.similarity_search(query, k=5, filter={"usage": library_usage_prediction}) | |
doc_context = format_kadi_api_doc_context(kadi_apy_docs) | |
code_context = format_kadi_apy_library_context(kadi_apy_sourcecode) | |
print("HERE WE GHOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO") | |
print("::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::") | |
#for doc in kadi_apy_sourcecode: | |
# print(doc.metadata.get("source", "Unknown Type")) | |
# print("\n") | |
print("::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::") | |
prompt = f"""You are an expert python developer. You are assisting in generating code for users who wants to make use of "kadi-apy", an API library. | |
"Doc-context:" provides you with information how to use this API library by givnig code examples and code documentation. | |
"Code-context:" provides you information of API methods and classes from the "kadi-apy" library. | |
Based on the retrieved contexts and the guidelines answer the query. | |
General Guidelines: | |
- If no related information is found from the contexts to answer the query, reply that you do not know. | |
Guidelines when generating code: | |
- First display the full code and then follow with a well structured explanation of the generated code. | |
Doc-context: | |
{doc_context} | |
Code-context: | |
{code_context} | |
Query: | |
{query} | |
""" | |
response = llm.invoke(prompt) | |
return response.content | |
def initialize(): | |
global vector_store, chunks, llm | |
download_gitlab_project_by_version() | |
code_folder_paths = ['kadi_apy'] | |
doc_folder_paths = ['docs/source/'] | |
code_texts, code_references = process_directory(DATA_DIR, code_folder_paths, []) | |
print("LEEEEEEEEEEEENGTH of code_texts: ", len(code_texts)) | |
doc_texts, kadiAPY_doc_references = process_directory(DATA_DIR, doc_folder_paths, []) | |
print("LEEEEEEEEEEEENGTH of doc_files: ", len(doc_texts)) | |
code_chunks = split_python_code_into_chunks(code_texts, code_references) | |
doc_chunks = split_into_chunks(doc_texts, kadiAPY_doc_references, CHUNK_SIZE, CHUNK_OVERLAP) | |
print(f"Total number of code_chunks: {len(code_chunks)}") | |
print(f"Total number of doc_chunks: {len(doc_chunks)}") | |
#docstore = embed_documents_into_vectorstore(kadiAPY_code_chunks, EMBEDDING_MODEL_NAME, PERSIST_DOC_DIRECTORY) | |
#codestore = embed_documents_into_vectorstore(kadiAPY_doc_chunks, EMBEDDING_MODEL_NAME, PERSIST_CODE_DIRECTORY) | |
filename = "test" | |
vector_store = embed_documents_into_vectorstore(doc_chunks + code_chunks, EMBEDDING_MODEL_NAME, f"{DATA_DIR}/{filename}") | |
print("HELLLLLLLLLO:", os.getcwd()) # Check the current working directory | |
print("BYYYYYYYYYYYYE:", os.listdir()) # List files and folders in the current | |
llm = setup_llm(LLM_MODEL_NAME, LLM_TEMPERATURE, GROQ_API_KEY) | |
initialize() | |
# Gradio utils | |
def check_input_text(text): | |
if not text: | |
gr.Warning("Please input a question.") | |
raise TypeError | |
return True | |
def add_text(history, text): | |
history = history + [(text, None)] | |
yield history, "" | |
import gradio as gr | |
def bot_kadi(history): | |
user_query = history[-1][0] | |
response = rag_workflow(user_query) | |
history[-1] = (user_query, response) | |
yield history | |
def main(): | |
with gr.Blocks() as demo: | |
gr.Markdown("## Kadi4Mat - AI Chat-Bot") | |
gr.Markdown("AI assistant for Kadi4Mat based on RAG architecture powered by LLM") | |
with gr.Tab("Kadi4Mat - AI Assistant"): | |
with gr.Row(): | |
with gr.Column(scale=10): | |
chatbot = gr.Chatbot([], elem_id="chatbot", label="Kadi Bot", bubble_full_width=False, show_copy_button=True, height=600) | |
user_txt = gr.Textbox(label="Question", placeholder="Type in your question and press Enter or click Submit") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
submit_btn = gr.Button("Submit", variant="primary") | |
with gr.Column(scale=1): | |
clear_btn = gr.Button("Clear", variant="stop") | |
gr.Examples( | |
examples=[ | |
"Who is working on Kadi4Mat?", | |
"How do i install the Kadi-Apy library?", | |
"How do i install the Kadi-Apy library for development?", | |
"I need a method to upload a file to a record", | |
], | |
inputs=user_txt, | |
outputs=chatbot, | |
fn=add_text, | |
label="Try asking...", | |
cache_examples=False, | |
examples_per_page=3, | |
) | |
user_txt.submit(check_input_text, user_txt, None).success(add_text, [chatbot, user_txt], [chatbot, user_txt]).then(bot_kadi, [chatbot], [chatbot]) | |
submit_btn.click(check_input_text, user_txt, None).success(add_text, [chatbot, user_txt], [chatbot, user_txt]).then(bot_kadi, [chatbot], [chatbot]) | |
#user_txt.submit(check_input_text, user_txt, None).success(add_text, [chatbot, user_txt], [chatbot, user_txt]).then(bot_kadi, [chatbot], [chatbot, doc_citation]) | |
#submit_btn.click(check_input_text, user_txt, None).success(add_text, [chatbot, user_txt], [chatbot, user_txt]).then(bot_kadi, [chatbot], [chatbot, doc_citation]) | |
clear_btn.click(lambda: None, None, chatbot, queue=False) | |
demo.launch() | |
if __name__ == "__main__": | |
main() |