Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,379 Bytes
40e68f7 fafcf34 127b8a4 fafcf34 127b8a4 40e68f7 127b8a4 fafcf34 40e68f7 d35aa53 40e68f7 0667969 40e68f7 e412e47 40e68f7 127b8a4 0667969 32bc6ec 127b8a4 40e68f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
# Adapted from https://github.com/MichalGeyer/pnp-diffusers/blob/main/pnp.py
import spaces
import glob
import os
from pathlib import Path
import torch
import torch.nn as nn
import torchvision.transforms as T
import argparse
from PIL import Image
import yaml
from tqdm import tqdm
from transformers import logging
from diffusers import DDIMScheduler, StableDiffusionPipeline
from pnp_utils import *
from unet2d_custom import UNet2DConditionModel
from pipeline_stable_diffusion_custom import StableDiffusionPipeline
from ldm.modules.encoders.audio_projector_res import Adapter
# suppress partial model loading warning
logging.set_verbosity_error()
from diffusers import logging
logging.set_verbosity_error()
class PNP(nn.Module):
def __init__(self, sd_version="1.4", n_timesteps=50, audio_projector_ckpt_path="ckpts/audio_projector_gh.pth",
adapter_ckpt_path="ckpts/greatest_hits.pt", device="cuda",
clap_path="CLAP/msclap",
clap_weights = "ckpts/CLAP_weights_2022.pth",
):
super().__init__()
self.device = device
if sd_version == '2.1':
model_key = "stabilityai/stable-diffusion-2-1-base"
elif sd_version == '2.0':
model_key = "stabilityai/stable-diffusion-2-base"
elif sd_version == '1.5':
model_key = "runwayml/stable-diffusion-v1-5"
elif sd_version == '1.4':
model_key = "CompVis/stable-diffusion-v1-4"
print(f"model key is {model_key}")
else:
raise ValueError(f'Stable-diffusion version {sd_version} not supported.')
# Create SD models
print('Loading SD model')
pipe = StableDiffusionPipeline.from_pretrained(model_key, torch_dtype=torch.float16).to("cuda")
model_id = "CompVis/stable-diffusion-v1-4"
self.unet = UNet2DConditionModel.from_pretrained(
model_id,
subfolder="unet",
use_adapter_list=[False, True, True],
low_cpu_mem_usage=False,
device_map=None
).to("cuda")
self.audio_projector_path = "ckpts/audio_projector_landscape.pth"
self.adapter_ckpt_path = "ckpts/landscape.pt"
#self.pnp.set_audio_projector(gate_dict_path, audio_projector_path)
# gate_dict = torch.load(adapter_ckpt_path)
# for name, param in self.unet.named_parameters():
# if "adapter" in name:
# param.data = gate_dict[name]
#unet.to(self.device);
#pipe.unet = unet.to(self.device);
self.vae = pipe.vae
self.tokenizer = pipe.tokenizer
self.text_encoder = pipe.text_encoder
# self.unet = unet.to(self.device);
#pipe.unet
self.scheduler = DDIMScheduler.from_pretrained(model_key, subfolder="scheduler")
self.scheduler.set_timesteps(n_timesteps, device=self.device)
self.latents_path = "latents_forward"
self.output_path = "PNP-results/home"
import os
os.makedirs(self.output_path, exist_ok=True)
import sys
sys.path.append(clap_path)
from CLAPWrapper import CLAPWrapper
self.audio_encoder = CLAPWrapper(clap_weights, use_cuda=True)
self.audio_projector = Adapter(audio_token_count=77, transformer_layer_count=4).cuda()
#self.audio_projector_ckpt_path = audio_projector_ckpt_path
self.sr = 44100
# self.set_audio_projector(adapter_ckpt_path, audio_projector_ckpt_path)
self.text_encoder = self.text_encoder.cuda()
#self.audio_projector.load_state_dict(torch.load(audio_projector_path))
self.audio_projector_ckpt_path = audio_projector_ckpt_path
self.adapter_ckpt_path = adapter_ckpt_path
self.changed_model = False
@spaces.GPU
def set_audio_projector(self, adapter_ckpt_path, audio_projector_ckpt_path):
#print(f"SETTING MODEL TO {adapter_ckpt_path}")
gate_dict = torch.load(adapter_ckpt_path)
for name, param in self.unet.named_parameters():
if "adapter" in name:
param.data = gate_dict[name]
self.unet.eval()
self.unet = self.unet.cuda()
self.audio_projector.load_state_dict(torch.load(audio_projector_ckpt_path))
self.audio_projector.eval()
self.audio_projector = self.audio_projector.cuda()
@spaces.GPU
def set_text_embeds(self, prompt, negative_prompt=""):
self.text_encoder = self.text_encoder.cuda()
self.text_embeds = self.get_text_embeds(prompt, negative_prompt)
self.pnp_guidance_embeds = self.get_text_embeds("", "").chunk(2)[0]
@spaces.GPU
def set_audio_context(self, audio_path):
self.audio_projector = self.audio_projector.cuda()
self.audio_encoder.clap.audio_encoder = self.audio_encoder.clap.audio_encoder.to("cuda")
audio_emb, _ = self.audio_encoder.get_audio_embeddings([audio_path], resample = self.sr)
dtpye_w = self.audio_projector.audio_emb_projection[0].weight.dtype
device_w = self.audio_projector.audio_emb_projection[0].weight.device
audio_emb = audio_emb.cuda()
audio_proj = self.audio_projector(audio_emb.unsqueeze(1))
audio_emb = torch.zeros(1, 1024).cuda()
audio_uc = self.audio_projector(audio_emb.unsqueeze(1))
self.audio_context = torch.cat([audio_uc, audio_uc, audio_proj]).cuda()
@torch.no_grad()
@spaces.GPU
def get_text_embeds(self, prompt, negative_prompt, batch_size=1):
# Tokenize text and get embeddings
text_input = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length,
truncation=True, return_tensors='pt')
input_ids = text_input.input_ids.to("cuda")
text_embeddings = self.text_encoder(input_ids)[0]
# Do the same for unconditional embeddings
uncond_input = self.tokenizer(negative_prompt, padding='max_length', max_length=self.tokenizer.model_max_length,
return_tensors='pt')
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
# Cat for final embeddings
text_embeddings = torch.cat([uncond_embeddings] * batch_size + [text_embeddings] * batch_size)
return text_embeddings
@torch.no_grad()
@spaces.GPU
def decode_latent(self, latent):
self.vae = self.vae.cuda()
with torch.autocast(device_type='cuda', dtype=torch.float32):
latent = 1 / 0.18215 * latent
img = self.vae.decode(latent).sample
img = (img / 2 + 0.5).clamp(0, 1)
return img
#@torch.autocast(device_type='cuda', dtype=torch.float32)
@spaces.GPU
def get_data(self, image_path):
self.image_path = image_path
# load image
image = Image.open(image_path).convert('RGB')
image = image.resize((512, 512), resample=Image.Resampling.LANCZOS)
image = T.ToTensor()(image).to(self.device)
# get noise
latents_path = os.path.join(self.latents_path, f'noisy_latents_{self.scheduler.timesteps[0]}.pt')
noisy_latent = torch.load(latents_path).to(self.device)
return image, noisy_latent
@torch.no_grad()
@spaces.GPU
def denoise_step(self, x, t, guidance_scale):
# register the time step and features in pnp injection modules
source_latents = load_source_latents_t(t, os.path.join(self.latents_path))
latent_model_input = torch.cat([source_latents] + ([x] * 2))
register_time(self, t.item())
# compute text embeddings
text_embed_input = torch.cat([self.pnp_guidance_embeds, self.text_embeds], dim=0)
# apply the denoising network
noise_pred = self.unet(latent_model_input, t,
encoder_hidden_states=text_embed_input,
audio_context=self.audio_context)['sample']
# perform guidance
_, noise_pred_uncond, noise_pred_cond = noise_pred.chunk(3)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)
# compute the denoising step with the reference model
denoised_latent = self.scheduler.step(noise_pred, t, x)['prev_sample']
return denoised_latent
@spaces.GPU
def init_pnp(self, conv_injection_t, qk_injection_t):
self.qk_injection_timesteps = self.scheduler.timesteps[:qk_injection_t] if qk_injection_t >= 0 else []
self.conv_injection_timesteps = self.scheduler.timesteps[:conv_injection_t] if conv_injection_t >= 0 else []
register_attention_control_efficient(self, self.qk_injection_timesteps)
register_conv_control_efficient(self, self.conv_injection_timesteps)
@spaces.GPU
def run_pnp(self, n_timesteps=50, pnp_f_t=0.5, pnp_attn_t=0.5,
prompt="", negative_prompt="",
audio_path="", image_path="",
audio_projector_path = "ckpts/audio_projector_landscape.pth",
adapter_ckpt_path = "ckpts/landscape.pt",
cfg_scale=5):
# if not self.changed_model:
#print(f"inside run_pnp {audio_projector_path}, {adapter_ckpt_path}")
self.set_audio_projector(adapter_ckpt_path, audio_projector_path)
self.audio_projector = self.audio_projector.cuda()
self.set_text_embeds(prompt)
self.set_audio_context(audio_path=audio_path)
self.image, self.eps = self.get_data(image_path=image_path)
self.unet = self.unet.cuda()
pnp_f_t = int(n_timesteps * pnp_f_t)
pnp_attn_t = int(n_timesteps * pnp_attn_t)
self.init_pnp(conv_injection_t=pnp_f_t, qk_injection_t=pnp_attn_t)
edited_img = self.sample_loop(self.eps, cfg_scale=cfg_scale)
return T.ToPILImage()(edited_img[0])
@spaces.GPU
def sample_loop(self, x, cfg_scale):
with torch.autocast(device_type='cuda', dtype=torch.float32):
for i, t in enumerate(tqdm(self.scheduler.timesteps, desc="Sampling")):
x = self.denoise_step(x, t, cfg_scale)
decoded_latent = self.decode_latent(x)
T.ToPILImage()(decoded_latent[0]).save(f'{self.output_path}/output.png')
return decoded_latent
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--config_path', type=str, default='config_pnp.yaml')
opt = parser.parse_args()
with open(opt.config_path, "r") as f:
config = yaml.safe_load(f)
os.makedirs(config["output_path"], exist_ok=True)
with open(os.path.join(config["output_path"], "config.yaml"), "w") as f:
yaml.dump(config, f)
seed_everything(config["seed"])
print(config)
pnp = PNP(config)
temp = pnp.run_pnp() |