Spaces:
Sleeping
Sleeping
root
commited on
Commit
·
9778d56
1
Parent(s):
40e68f7
init
Browse files- CLAP/msclap/CLAPWrapper.py +274 -0
- CLAP/msclap/__init__.py +0 -0
- CLAP/msclap/clap.ipynb +0 -0
- CLAP/msclap/classification.ipynb +361 -0
- CLAP/msclap/configs/.ipynb_checkpoints/config-checkpoint.yml +26 -0
- CLAP/msclap/configs/config.yml +26 -0
- CLAP/msclap/esc50_dataset.py +82 -0
- CLAP/msclap/models/.ipynb_checkpoints/audio-checkpoint.py +201 -0
- CLAP/msclap/models/.ipynb_checkpoints/clap-checkpoint.py +90 -0
- CLAP/msclap/models/.ipynb_checkpoints/utils-checkpoint.py +26 -0
- CLAP/msclap/models/__init__.py +3 -0
- CLAP/msclap/models/__pycache__/__init__.cpython-310.pyc +0 -0
- CLAP/msclap/models/__pycache__/__init__.cpython-311.pyc +0 -0
- CLAP/msclap/models/__pycache__/__init__.cpython-38.pyc +0 -0
- CLAP/msclap/models/__pycache__/audio.cpython-310.pyc +0 -0
- CLAP/msclap/models/__pycache__/audio.cpython-311.pyc +0 -0
- CLAP/msclap/models/__pycache__/audio.cpython-38.pyc +0 -0
- CLAP/msclap/models/__pycache__/clap.cpython-310.pyc +0 -0
- CLAP/msclap/models/__pycache__/clap.cpython-311.pyc +0 -0
- CLAP/msclap/models/__pycache__/clap.cpython-38.pyc +0 -0
- CLAP/msclap/models/__pycache__/utils.cpython-310.pyc +0 -0
- CLAP/msclap/models/__pycache__/utils.cpython-311.pyc +0 -0
- CLAP/msclap/models/__pycache__/utils.cpython-38.pyc +0 -0
- CLAP/msclap/models/audio.py +200 -0
- CLAP/msclap/models/clap.py +92 -0
- CLAP/msclap/models/utils.py +26 -0
- CLAP/msclap/zero_shot_classification.py +46 -0
- CLAP/msclap/zero_shot_predictions.py +52 -0
- README.md +1 -0
- ldm/modules/encoders/audio_projector_res.py +94 -0
- requirements.txt +18 -0
CLAP/msclap/CLAPWrapper.py
ADDED
@@ -0,0 +1,274 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
import torchaudio
|
3 |
+
# from torch._six import string_classes
|
4 |
+
import collections
|
5 |
+
import re
|
6 |
+
import torch.nn.functional as F
|
7 |
+
import numpy as np
|
8 |
+
from transformers import AutoTokenizer
|
9 |
+
from models.utils import read_config_as_args
|
10 |
+
from models.clap import CLAP
|
11 |
+
import math
|
12 |
+
import torchaudio.transforms as T
|
13 |
+
import os
|
14 |
+
import torch
|
15 |
+
from importlib_resources import files
|
16 |
+
|
17 |
+
|
18 |
+
class CLAPWrapper():
|
19 |
+
"""
|
20 |
+
A class for interfacing CLAP model.
|
21 |
+
"""
|
22 |
+
|
23 |
+
def __init__(self, model_fp, use_cuda=False):
|
24 |
+
self.np_str_obj_array_pattern = re.compile(r'[SaUO]')
|
25 |
+
self.file_path = os.path.realpath(__file__)
|
26 |
+
self.default_collate_err_msg_format = (
|
27 |
+
"default_collate: batch must contain tensors, numpy arrays, numbers, "
|
28 |
+
"dicts or lists; found {}")
|
29 |
+
self.config_as_str = files('configs').joinpath('config.yml').read_text()
|
30 |
+
self.model_fp = model_fp
|
31 |
+
self.use_cuda = use_cuda
|
32 |
+
self.clap, self.tokenizer, self.args = self.load_clap()
|
33 |
+
|
34 |
+
|
35 |
+
def load_clap(self):
|
36 |
+
r"""Load CLAP model with args from config file"""
|
37 |
+
|
38 |
+
args = read_config_as_args(self.config_as_str, is_config_str=True)
|
39 |
+
|
40 |
+
if 'bert' in args.text_model:
|
41 |
+
self.token_keys = ['input_ids', 'token_type_ids', 'attention_mask']
|
42 |
+
else:
|
43 |
+
self.token_keys = ['input_ids', 'attention_mask']
|
44 |
+
|
45 |
+
clap = CLAP(
|
46 |
+
audioenc_name=args.audioenc_name,
|
47 |
+
sample_rate=args.sampling_rate,
|
48 |
+
window_size=args.window_size,
|
49 |
+
hop_size=args.hop_size,
|
50 |
+
mel_bins=args.mel_bins,
|
51 |
+
fmin=args.fmin,
|
52 |
+
fmax=args.fmax,
|
53 |
+
classes_num=args.num_classes,
|
54 |
+
out_emb=args.out_emb,
|
55 |
+
text_model=args.text_model,
|
56 |
+
transformer_embed_dim=args.transformer_embed_dim,
|
57 |
+
d_proj=args.d_proj
|
58 |
+
)
|
59 |
+
|
60 |
+
# print("---")
|
61 |
+
# print(f"duration is {args.duration}")
|
62 |
+
|
63 |
+
# args.duration = 10
|
64 |
+
|
65 |
+
# Load pretrained weights for model
|
66 |
+
model_state_dict = torch.load(self.model_fp, map_location=torch.device('cpu'))['model']
|
67 |
+
clap.load_state_dict(model_state_dict, strict=False)
|
68 |
+
|
69 |
+
clap.eval() # set clap in eval mode
|
70 |
+
tokenizer = AutoTokenizer.from_pretrained(args.text_model)
|
71 |
+
|
72 |
+
if self.use_cuda and torch.cuda.is_available():
|
73 |
+
clap = clap.cuda()
|
74 |
+
|
75 |
+
return clap, tokenizer, args
|
76 |
+
|
77 |
+
def default_collate(self, batch):
|
78 |
+
r"""Puts each data field into a tensor with outer dimension batch size"""
|
79 |
+
elem = batch[0]
|
80 |
+
elem_type = type(elem)
|
81 |
+
|
82 |
+
|
83 |
+
if isinstance(elem, torch.Tensor):
|
84 |
+
out = None
|
85 |
+
if torch.utils.data.get_worker_info() is not None:
|
86 |
+
# If we're in a background process, concatenate directly into a
|
87 |
+
# shared memory tensor to avoid an extra copy
|
88 |
+
numel = sum([x.numel() for x in batch])
|
89 |
+
storage = elem.storage()._new_shared(numel)
|
90 |
+
out = elem.new(storage)
|
91 |
+
return torch.stack(batch, 0, out=out)
|
92 |
+
|
93 |
+
elif elem_type.__module__ == 'numpy' and elem_type.__name__ != 'str_' \
|
94 |
+
and elem_type.__name__ != 'string_':
|
95 |
+
if elem_type.__name__ == 'ndarray' or elem_type.__name__ == 'memmap':
|
96 |
+
# array of string classes and object
|
97 |
+
|
98 |
+
if self.np_str_obj_array_pattern.search(elem.dtype.str) is not None:
|
99 |
+
raise TypeError(
|
100 |
+
self.default_collate_err_msg_format.format(elem.dtype))
|
101 |
+
|
102 |
+
return self.default_collate([torch.as_tensor(b) for b in batch])
|
103 |
+
elif elem.shape == (): # scalars
|
104 |
+
return torch.as_tensor(batch)
|
105 |
+
elif isinstance(elem, float):
|
106 |
+
return torch.tensor(batch, dtype=torch.float64)
|
107 |
+
elif isinstance(elem, int):
|
108 |
+
return torch.tensor(batch)
|
109 |
+
# elif isinstance(elem, string_classes):
|
110 |
+
# return batch
|
111 |
+
elif isinstance(elem, collections.abc.Mapping):
|
112 |
+
return {key: self.default_collate([d[key] for d in batch]) for key in elem}
|
113 |
+
elif isinstance(elem, tuple) and hasattr(elem, '_fields'): # namedtuple
|
114 |
+
return elem_type(*(self.default_collate(samples) for samples in zip(*batch)))
|
115 |
+
elif isinstance(elem, collections.abc.Sequence):
|
116 |
+
# check to make sure that the elements in batch have consistent size
|
117 |
+
it = iter(batch)
|
118 |
+
elem_size = len(next(it))
|
119 |
+
if not all(len(elem) == elem_size for elem in it):
|
120 |
+
raise RuntimeError(
|
121 |
+
'each element in list of batch should be of equal size')
|
122 |
+
transposed = zip(*batch)
|
123 |
+
return [self.default_collate(samples) for samples in transposed]
|
124 |
+
|
125 |
+
raise TypeError(self.default_collate_err_msg_format.format(elem_type))
|
126 |
+
|
127 |
+
def load_audio_into_tensor(self, audio_path, audio_duration, resample=False):
|
128 |
+
r"""Loads audio file and returns raw audio."""
|
129 |
+
# Randomly sample a segment of audio_duration from the clip or pad to match duration
|
130 |
+
audio_time_series, sample_rate = torchaudio.load(audio_path)
|
131 |
+
|
132 |
+
resample_rate = self.args.sampling_rate
|
133 |
+
|
134 |
+
audio_time_series = torch.mean(audio_time_series, dim=0, keepdim=True)
|
135 |
+
|
136 |
+
|
137 |
+
if resample:
|
138 |
+
resampler = T.Resample(sample_rate, resample_rate)
|
139 |
+
audio_time_series = resampler(audio_time_series)
|
140 |
+
|
141 |
+
audio_time_series = audio_time_series.reshape(-1)
|
142 |
+
|
143 |
+
# audio_duration = 10
|
144 |
+
# window_len = 5
|
145 |
+
# window_count = 10
|
146 |
+
|
147 |
+
|
148 |
+
# audio_time_series is shorter than predefined audio duration,
|
149 |
+
# so audio_time_series is extended
|
150 |
+
if audio_duration*resample_rate >= audio_time_series.shape[0]: # it was sample rate here but why it should be wrong ????
|
151 |
+
repeat_factor = int(np.ceil((audio_duration*resample_rate) /
|
152 |
+
audio_time_series.shape[0]))
|
153 |
+
# Repeat audio_time_series by repeat_factor to match audio_duration
|
154 |
+
audio_time_series = audio_time_series.repeat(repeat_factor)
|
155 |
+
# remove excess part of audio_time_series
|
156 |
+
audio_time_series = audio_time_series[0:audio_duration*resample_rate]
|
157 |
+
else:
|
158 |
+
# audio_time_series is longer than predefined audio duration,
|
159 |
+
# so audio_time_series is trimmed
|
160 |
+
start_index = random.randrange(
|
161 |
+
audio_time_series.shape[0] - audio_duration*resample_rate)
|
162 |
+
audio_time_series = audio_time_series[start_index:start_index +
|
163 |
+
audio_duration*resample_rate]
|
164 |
+
|
165 |
+
|
166 |
+
return torch.FloatTensor(audio_time_series)
|
167 |
+
|
168 |
+
def preprocess_audio(self, audio_files, resample):
|
169 |
+
r"""Load list of audio files and return raw audio"""
|
170 |
+
audio_tensors = []
|
171 |
+
|
172 |
+
for audio_file in audio_files:
|
173 |
+
# print(self.args.duration)
|
174 |
+
|
175 |
+
audio_tensor = self.load_audio_into_tensor(
|
176 |
+
audio_file, self.args.duration, resample)
|
177 |
+
|
178 |
+
if self.use_cuda and torch.cuda.is_available():
|
179 |
+
audio_tensor = audio_tensor.reshape(1, -1).cuda()
|
180 |
+
else:
|
181 |
+
audio_tensor.reshape(1, -1)
|
182 |
+
|
183 |
+
# audio_tensor = audio_tensor.reshape(
|
184 |
+
# 1, -1).cuda if self.use_cuda and torch.cuda.is_available() else audio_tensor.reshape(1, -1)
|
185 |
+
|
186 |
+
audio_tensors.append(audio_tensor)
|
187 |
+
|
188 |
+
return self.default_collate(audio_tensors)
|
189 |
+
|
190 |
+
def preprocess_text(self, text_queries):
|
191 |
+
r"""Load list of class labels and return tokenized text"""
|
192 |
+
tokenized_texts = []
|
193 |
+
for ttext in text_queries:
|
194 |
+
tok = self.tokenizer.encode_plus(
|
195 |
+
text=ttext, add_special_tokens=True, max_length=self.args.text_len, pad_to_max_length=True, return_tensors="pt")
|
196 |
+
for key in self.token_keys:
|
197 |
+
tok[key] = tok[key].reshape(-1).cuda() if self.use_cuda and torch.cuda.is_available() else tok[key].reshape(-1)
|
198 |
+
tokenized_texts.append(tok)
|
199 |
+
return self.default_collate(tokenized_texts)
|
200 |
+
|
201 |
+
def get_text_embeddings(self, class_labels):
|
202 |
+
r"""Load list of class labels and return text embeddings"""
|
203 |
+
preprocessed_text = self.preprocess_text(class_labels)
|
204 |
+
text_embeddings = self._get_text_embeddings(preprocessed_text)
|
205 |
+
text_embeddings = text_embeddings/torch.norm(text_embeddings, dim=-1, keepdim=True)
|
206 |
+
return text_embeddings
|
207 |
+
|
208 |
+
def get_audio_embeddings(self, audio_files, resample, use_aug=False):
|
209 |
+
r"""Load list of audio files and return a audio embeddings"""
|
210 |
+
preprocessed_audio = self.preprocess_audio(audio_files, resample)
|
211 |
+
audio_embeddings, audio_inner_layer = self._get_audio_embeddings(preprocessed_audio, use_aug=use_aug)
|
212 |
+
audio_embeddings = audio_embeddings/torch.norm(audio_embeddings, dim=-1, keepdim=True)
|
213 |
+
return audio_embeddings, audio_inner_layer
|
214 |
+
|
215 |
+
def _get_text_embeddings(self, preprocessed_text):
|
216 |
+
r"""Load preprocessed text and return text embeddings"""
|
217 |
+
with torch.no_grad():
|
218 |
+
text_embeddings = self.clap.caption_encoder(preprocessed_text)
|
219 |
+
text_embeddings = text_embeddings/torch.norm(text_embeddings, dim=-1, keepdim=True)
|
220 |
+
return text_embeddings
|
221 |
+
|
222 |
+
def _get_audio_embeddings(self, preprocessed_audio, use_aug=False):
|
223 |
+
r"""Load preprocessed audio and return a audio embeddings"""
|
224 |
+
with torch.no_grad():
|
225 |
+
preprocessed_audio = preprocessed_audio.reshape(
|
226 |
+
preprocessed_audio.shape[0], preprocessed_audio.shape[2])
|
227 |
+
#Append [0] the audio emebdding, [1] has output class probabilities
|
228 |
+
|
229 |
+
audio_embeddings, _, audio_inner_layer = self.clap.audio_encoder(preprocessed_audio, use_aug=use_aug)
|
230 |
+
audio_embeddings = audio_embeddings/torch.norm(audio_embeddings, dim=-1, keepdim=True)
|
231 |
+
|
232 |
+
|
233 |
+
return audio_embeddings, audio_inner_layer
|
234 |
+
|
235 |
+
def compute_similarity(self, audio_embeddings, text_embeddings):
|
236 |
+
r"""Compute similarity between text and audio embeddings"""
|
237 |
+
logit_scale = self.clap.logit_scale.exp()
|
238 |
+
similarity = logit_scale*text_embeddings @ audio_embeddings.T
|
239 |
+
return similarity.T
|
240 |
+
|
241 |
+
def _generic_batch_inference(self, func, *args):
|
242 |
+
r"""Process audio and/or text per batch"""
|
243 |
+
input_tmp = args[0]
|
244 |
+
batch_size = args[-1]
|
245 |
+
# args[0] has audio_files, args[1] has class_labels
|
246 |
+
inputs = [args[0], args[1]] if len(args) == 3 else [args[0]]
|
247 |
+
args0_len = len(args[0])
|
248 |
+
# compute text_embeddings once for all the audio_files batches
|
249 |
+
if len(inputs) == 2:
|
250 |
+
text_embeddings = self.get_text_embeddings(args[1])
|
251 |
+
inputs = [args[0], args[1], text_embeddings]
|
252 |
+
dataset_idx = 0
|
253 |
+
for _ in range(math.ceil(args0_len/batch_size)):
|
254 |
+
next_batch_idx = dataset_idx + batch_size
|
255 |
+
# batch size is bigger than available audio/text items
|
256 |
+
if next_batch_idx >= args0_len:
|
257 |
+
inputs[0] = input_tmp[dataset_idx:]
|
258 |
+
return func(*tuple(inputs))
|
259 |
+
else:
|
260 |
+
inputs[0] = input_tmp[dataset_idx:next_batch_idx]
|
261 |
+
yield func(*tuple(inputs))
|
262 |
+
dataset_idx = next_batch_idx
|
263 |
+
|
264 |
+
def get_audio_embeddings_per_batch(self, audio_files, batch_size):
|
265 |
+
r"""Load preprocessed audio and return a audio embeddings per batch"""
|
266 |
+
return self._generic_batch_inference(self.get_audio_embeddings, audio_files, batch_size)
|
267 |
+
|
268 |
+
def get_text_embeddings_per_batch(self, class_labels, batch_size):
|
269 |
+
r"""Load preprocessed text and return text embeddings per batch"""
|
270 |
+
return self._generic_batch_inference(self.get_text_embeddings, class_labels, batch_size)
|
271 |
+
|
272 |
+
def classify_audio_files_per_batch(self, audio_files, class_labels, batch_size):
|
273 |
+
r"""Compute classification probabilities for each audio recording in a batch and each class label"""
|
274 |
+
return self._generic_batch_inference(self.classify_audio_files, audio_files, class_labels, batch_size)
|
CLAP/msclap/__init__.py
ADDED
File without changes
|
CLAP/msclap/clap.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
CLAP/msclap/classification.ipynb
ADDED
@@ -0,0 +1,361 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 15,
|
6 |
+
"id": "6bf499e8-54b0-498b-84b6-aba956cc573b",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"import pandas as pd\n",
|
11 |
+
"\n",
|
12 |
+
"\n",
|
13 |
+
"from CLAPWrapper import CLAPWrapper\n",
|
14 |
+
"from esc50_dataset import ESC50\n",
|
15 |
+
"import torch.nn.functional as F\n",
|
16 |
+
"import numpy as np\n",
|
17 |
+
"from tqdm import tqdm\n",
|
18 |
+
"from sklearn.metrics import accuracy_score\n",
|
19 |
+
"\n",
|
20 |
+
"import torch\n"
|
21 |
+
]
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"cell_type": "code",
|
25 |
+
"execution_count": 16,
|
26 |
+
"id": "082e82b9-56b4-41ce-a8f8-390bb5bc0193",
|
27 |
+
"metadata": {},
|
28 |
+
"outputs": [],
|
29 |
+
"source": [
|
30 |
+
"df = pd.read_csv(\"../landscape/landscape_final.csv\")\n",
|
31 |
+
"\n",
|
32 |
+
"classes = list(set(df[\"label\"]))\n",
|
33 |
+
"\n",
|
34 |
+
"prompt = 'this is a sound of '\n",
|
35 |
+
"y = [prompt + x for x in classes]\n",
|
36 |
+
"\n",
|
37 |
+
"class_count = len(classes)"
|
38 |
+
]
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"cell_type": "code",
|
42 |
+
"execution_count": 17,
|
43 |
+
"id": "68e72bf4-6c94-438d-b3f3-c46aaa0b88cc",
|
44 |
+
"metadata": {},
|
45 |
+
"outputs": [],
|
46 |
+
"source": [
|
47 |
+
"class_dict = {k: v for v, k in enumerate(classes)}"
|
48 |
+
]
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"cell_type": "code",
|
52 |
+
"execution_count": 37,
|
53 |
+
"id": "80c437e3-b7e3-41bc-bb9c-fab936648caf",
|
54 |
+
"metadata": {},
|
55 |
+
"outputs": [
|
56 |
+
{
|
57 |
+
"name": "stderr",
|
58 |
+
"output_type": "stream",
|
59 |
+
"text": [
|
60 |
+
"/kuacc/users/bbiner21/.conda/envs/clap/lib/python3.8/site-packages/torchlibrosa/stft.py:193: FutureWarning: Pass size=1024 as keyword args. From version 0.10 passing these as positional arguments will result in an error\n",
|
61 |
+
" fft_window = librosa.util.pad_center(fft_window, n_fft)\n",
|
62 |
+
"Some weights of the model checkpoint at bert-base-uncased were not used when initializing BertModel: ['cls.predictions.transform.LayerNorm.weight', 'cls.predictions.transform.dense.weight', 'cls.seq_relationship.bias', 'cls.predictions.bias', 'cls.predictions.transform.dense.bias', 'cls.predictions.decoder.weight', 'cls.predictions.transform.LayerNorm.bias', 'cls.seq_relationship.weight']\n",
|
63 |
+
"- This IS expected if you are initializing BertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
|
64 |
+
"- This IS NOT expected if you are initializing BertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
|
65 |
+
"Truncation was not explicitly activated but `max_length` is provided a specific value, please use `truncation=True` to explicitly truncate examples to max length. Defaulting to 'longest_first' truncation strategy. If you encode pairs of sequences (GLUE-style) with the tokenizer you can select this strategy more precisely by providing a specific strategy to `truncation`.\n",
|
66 |
+
"/kuacc/users/bbiner21/.conda/envs/clap/lib/python3.8/site-packages/transformers/tokenization_utils_base.py:2339: FutureWarning: The `pad_to_max_length` argument is deprecated and will be removed in a future version, use `padding=True` or `padding='longest'` to pad to the longest sequence in the batch, or use `padding='max_length'` to pad to a max length. In this case, you can give a specific length with `max_length` (e.g. `max_length=45`) or leave max_length to None to pad to the maximal input size of the model (e.g. 512 for Bert).\n",
|
67 |
+
" warnings.warn(\n"
|
68 |
+
]
|
69 |
+
}
|
70 |
+
],
|
71 |
+
"source": [
|
72 |
+
"# Load and initialize CLAP\n",
|
73 |
+
"weights_path = \"../clap_weight/CLAP_weights_2022.pth\"\n",
|
74 |
+
"\n",
|
75 |
+
"# Setting use_cuda = True will load the model on a GPU using CUDA\n",
|
76 |
+
"clap_model = CLAPWrapper(weights_path, use_cuda=False)\n",
|
77 |
+
"\n",
|
78 |
+
"# Computing text embeddings\n",
|
79 |
+
"text_embeddings = clap_model.get_text_embeddings(y)\n",
|
80 |
+
"\n",
|
81 |
+
"# Computing audio embeddings\n",
|
82 |
+
"y_preds, y_labels = [], []\n"
|
83 |
+
]
|
84 |
+
},
|
85 |
+
{
|
86 |
+
"cell_type": "code",
|
87 |
+
"execution_count": 38,
|
88 |
+
"id": "3093fa76-5c25-4cae-a43c-8368fdfd96fc",
|
89 |
+
"metadata": {},
|
90 |
+
"outputs": [
|
91 |
+
{
|
92 |
+
"name": "stderr",
|
93 |
+
"output_type": "stream",
|
94 |
+
"text": [
|
95 |
+
"100%|██████████| 1061/1061 [02:33<00:00, 6.92it/s]\n"
|
96 |
+
]
|
97 |
+
}
|
98 |
+
],
|
99 |
+
"source": [
|
100 |
+
"\n",
|
101 |
+
"gt = []\n",
|
102 |
+
"pred = []\n",
|
103 |
+
"\n",
|
104 |
+
"for i in tqdm(range(len(df.index))):\n",
|
105 |
+
" x = \"/datasets/audio-image/audios/audio_10s/\" + df.iloc[i,1] + \".wav\"\n",
|
106 |
+
" \n",
|
107 |
+
" cur_class = class_dict[df.iloc[i,0]]\n",
|
108 |
+
" one_hot = torch.zeros((1,class_count))\n",
|
109 |
+
" one_hot[0,cur_class] = 1.0 \n",
|
110 |
+
" \n",
|
111 |
+
" gt.append(cur_class)\n",
|
112 |
+
" \n",
|
113 |
+
" \n",
|
114 |
+
"# x, _, one_hot_target = dataset.__getitem__(i)\n",
|
115 |
+
" audio_embeddings = clap_model.get_audio_embeddings([x], resample=True)\n",
|
116 |
+
" \n",
|
117 |
+
" similarity = clap_model.compute_similarity(audio_embeddings, text_embeddings)\n",
|
118 |
+
" y_pred = F.softmax(similarity.detach().cpu(), dim=1).numpy()\n",
|
119 |
+
" \n",
|
120 |
+
" pred.append(np.argmax(y_pred, axis=1)[0])\n",
|
121 |
+
" y_preds.append(y_pred)\n",
|
122 |
+
" y_labels.append(one_hot.detach().cpu().numpy())\n"
|
123 |
+
]
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"cell_type": "code",
|
127 |
+
"execution_count": 23,
|
128 |
+
"id": "e2247ab8-844d-4eba-b691-4d38051a51a3",
|
129 |
+
"metadata": {},
|
130 |
+
"outputs": [
|
131 |
+
{
|
132 |
+
"name": "stdout",
|
133 |
+
"output_type": "stream",
|
134 |
+
"text": [
|
135 |
+
"ESC50 Accuracy 0.4458058435438266\n"
|
136 |
+
]
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"data": {
|
140 |
+
"text/plain": [
|
141 |
+
"'\\nThe output:\\n\\nESC50 Accuracy: 82.6%\\n\\n'"
|
142 |
+
]
|
143 |
+
},
|
144 |
+
"execution_count": 23,
|
145 |
+
"metadata": {},
|
146 |
+
"output_type": "execute_result"
|
147 |
+
}
|
148 |
+
],
|
149 |
+
"source": [
|
150 |
+
"\n",
|
151 |
+
"\n",
|
152 |
+
"\n",
|
153 |
+
"# for i in tqdm(range(len(dataset))):\n",
|
154 |
+
"# x, _, one_hot_target = dataset.__getitem__(i)\n",
|
155 |
+
"# audio_embeddings = clap_model.get_audio_embeddings([x], resample=True)\n",
|
156 |
+
"# similarity = clap_model.compute_similarity(audio_embeddings, text_embeddings)\n",
|
157 |
+
"# y_pred = F.softmax(similarity.detach().cpu(), dim=1).numpy()\n",
|
158 |
+
"# y_preds.append(y_pred)\n",
|
159 |
+
"# y_labels.append(one_hot_target.detach().cpu().numpy())\n",
|
160 |
+
"\n",
|
161 |
+
"y_labels, y_preds = np.concatenate(y_labels, axis=0), np.concatenate(y_preds, axis=0)\n",
|
162 |
+
"acc = accuracy_score(np.argmax(y_labels, axis=1), np.argmax(y_preds, axis=1))\n",
|
163 |
+
"print('ESC50 Accuracy {}'.format(acc))\n",
|
164 |
+
"\n",
|
165 |
+
"\"\"\"\n",
|
166 |
+
"The output:\n",
|
167 |
+
"\n",
|
168 |
+
"ESC50 Accuracy: 82.6%\n",
|
169 |
+
"\n",
|
170 |
+
"\"\"\"\n"
|
171 |
+
]
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"cell_type": "code",
|
175 |
+
"execution_count": 25,
|
176 |
+
"id": "41254964-43ec-4fcb-b1d0-2c9ae76d56f6",
|
177 |
+
"metadata": {},
|
178 |
+
"outputs": [],
|
179 |
+
"source": [
|
180 |
+
"gt = []\n",
|
181 |
+
"x = \"/datasets/audio-image/audios/audio_10s/\" + df.iloc[0,1] + \".wav\"\n",
|
182 |
+
"\n",
|
183 |
+
"cur_class = class_dict[df.iloc[0,0]]\n",
|
184 |
+
"one_hot = torch.zeros((1,class_count))\n",
|
185 |
+
"one_hot[0,cur_class] = 1.0 \n",
|
186 |
+
"\n",
|
187 |
+
"gt.append(cur_class)\n",
|
188 |
+
"\n",
|
189 |
+
"\n",
|
190 |
+
"# x, _, one_hot_target = dataset.__getitem__(i)\n",
|
191 |
+
"audio_embeddings = clap_model.get_audio_embeddings([x], resample=True)\n",
|
192 |
+
"\n",
|
193 |
+
"similarity = clap_model.compute_similarity(audio_embeddings, text_embeddings)"
|
194 |
+
]
|
195 |
+
},
|
196 |
+
{
|
197 |
+
"cell_type": "code",
|
198 |
+
"execution_count": 31,
|
199 |
+
"id": "7e73d889-05b6-46ab-820a-9728b1623d5a",
|
200 |
+
"metadata": {},
|
201 |
+
"outputs": [],
|
202 |
+
"source": [
|
203 |
+
"y_pred = F.softmax(similarity.detach().cpu(), dim=1).numpy()\n"
|
204 |
+
]
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"cell_type": "code",
|
208 |
+
"execution_count": 35,
|
209 |
+
"id": "99574178-aba0-467b-a370-679ae927b13b",
|
210 |
+
"metadata": {},
|
211 |
+
"outputs": [
|
212 |
+
{
|
213 |
+
"data": {
|
214 |
+
"text/plain": [
|
215 |
+
"3"
|
216 |
+
]
|
217 |
+
},
|
218 |
+
"execution_count": 35,
|
219 |
+
"metadata": {},
|
220 |
+
"output_type": "execute_result"
|
221 |
+
}
|
222 |
+
],
|
223 |
+
"source": [
|
224 |
+
"np.argmax(y_pred, axis=1)[0]"
|
225 |
+
]
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"cell_type": "code",
|
229 |
+
"execution_count": 41,
|
230 |
+
"id": "21b42bef-9500-46be-8f3e-2c53b91462d0",
|
231 |
+
"metadata": {},
|
232 |
+
"outputs": [
|
233 |
+
{
|
234 |
+
"data": {
|
235 |
+
"text/plain": [
|
236 |
+
"array([0.28571429, 0.35164835, 0.7877095 , 0.59615385, 0.01639344,\n",
|
237 |
+
" 0.93243243, 0.93292683, 0.03092784, 0.4 ])"
|
238 |
+
]
|
239 |
+
},
|
240 |
+
"execution_count": 41,
|
241 |
+
"metadata": {},
|
242 |
+
"output_type": "execute_result"
|
243 |
+
}
|
244 |
+
],
|
245 |
+
"source": [
|
246 |
+
"from sklearn.metrics import confusion_matrix\n",
|
247 |
+
"\n",
|
248 |
+
"matrix = confusion_matrix(gt, pred)\n",
|
249 |
+
"matrix.diagonal()/matrix.sum(axis=1)"
|
250 |
+
]
|
251 |
+
},
|
252 |
+
{
|
253 |
+
"cell_type": "code",
|
254 |
+
"execution_count": 42,
|
255 |
+
"id": "2e96c02a-d789-417e-aaec-a420976bef17",
|
256 |
+
"metadata": {},
|
257 |
+
"outputs": [
|
258 |
+
{
|
259 |
+
"data": {
|
260 |
+
"text/plain": [
|
261 |
+
"array([[ 8, 2, 0, 0, 0, 0, 18, 0, 0],\n",
|
262 |
+
" [ 5, 64, 1, 11, 0, 0, 100, 1, 0],\n",
|
263 |
+
" [ 1, 1, 141, 5, 2, 3, 23, 1, 2],\n",
|
264 |
+
" [ 2, 1, 0, 31, 0, 1, 15, 0, 2],\n",
|
265 |
+
" [ 70, 51, 0, 0, 3, 2, 40, 17, 0],\n",
|
266 |
+
" [ 1, 1, 0, 3, 0, 69, 0, 0, 0],\n",
|
267 |
+
" [ 2, 1, 7, 0, 0, 0, 153, 0, 1],\n",
|
268 |
+
" [ 30, 85, 0, 1, 0, 0, 72, 6, 0],\n",
|
269 |
+
" [ 1, 0, 0, 1, 0, 1, 0, 0, 2]])"
|
270 |
+
]
|
271 |
+
},
|
272 |
+
"execution_count": 42,
|
273 |
+
"metadata": {},
|
274 |
+
"output_type": "execute_result"
|
275 |
+
}
|
276 |
+
],
|
277 |
+
"source": [
|
278 |
+
"matrix"
|
279 |
+
]
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"cell_type": "code",
|
283 |
+
"execution_count": 43,
|
284 |
+
"id": "24911c5c-06ed-492f-927d-1555df15b1c5",
|
285 |
+
"metadata": {},
|
286 |
+
"outputs": [
|
287 |
+
{
|
288 |
+
"data": {
|
289 |
+
"text/plain": [
|
290 |
+
"['this is a sound of waterfall burbling',\n",
|
291 |
+
" 'this is a sound of wind noise',\n",
|
292 |
+
" 'this is a sound of fire crackling',\n",
|
293 |
+
" 'this is a sound of thunder',\n",
|
294 |
+
" 'this is a sound of squishing water',\n",
|
295 |
+
" 'this is a sound of underwater bubbling',\n",
|
296 |
+
" 'this is a sound of raining',\n",
|
297 |
+
" 'this is a sound of splashing water',\n",
|
298 |
+
" 'this is a sound of explosion']"
|
299 |
+
]
|
300 |
+
},
|
301 |
+
"execution_count": 43,
|
302 |
+
"metadata": {},
|
303 |
+
"output_type": "execute_result"
|
304 |
+
}
|
305 |
+
],
|
306 |
+
"source": [
|
307 |
+
"y"
|
308 |
+
]
|
309 |
+
},
|
310 |
+
{
|
311 |
+
"cell_type": "code",
|
312 |
+
"execution_count": 44,
|
313 |
+
"id": "e90b1d22-ddcd-421b-a011-ef1054cdf412",
|
314 |
+
"metadata": {},
|
315 |
+
"outputs": [
|
316 |
+
{
|
317 |
+
"data": {
|
318 |
+
"text/plain": [
|
319 |
+
"['waterfall burbling',\n",
|
320 |
+
" 'wind noise',\n",
|
321 |
+
" 'fire crackling',\n",
|
322 |
+
" 'thunder',\n",
|
323 |
+
" 'squishing water',\n",
|
324 |
+
" 'underwater bubbling',\n",
|
325 |
+
" 'raining',\n",
|
326 |
+
" 'splashing water',\n",
|
327 |
+
" 'explosion']"
|
328 |
+
]
|
329 |
+
},
|
330 |
+
"execution_count": 44,
|
331 |
+
"metadata": {},
|
332 |
+
"output_type": "execute_result"
|
333 |
+
}
|
334 |
+
],
|
335 |
+
"source": [
|
336 |
+
"classes"
|
337 |
+
]
|
338 |
+
}
|
339 |
+
],
|
340 |
+
"metadata": {
|
341 |
+
"kernelspec": {
|
342 |
+
"display_name": "clap",
|
343 |
+
"language": "python",
|
344 |
+
"name": "clap"
|
345 |
+
},
|
346 |
+
"language_info": {
|
347 |
+
"codemirror_mode": {
|
348 |
+
"name": "ipython",
|
349 |
+
"version": 3
|
350 |
+
},
|
351 |
+
"file_extension": ".py",
|
352 |
+
"mimetype": "text/x-python",
|
353 |
+
"name": "python",
|
354 |
+
"nbconvert_exporter": "python",
|
355 |
+
"pygments_lexer": "ipython3",
|
356 |
+
"version": "3.8.16"
|
357 |
+
}
|
358 |
+
},
|
359 |
+
"nbformat": 4,
|
360 |
+
"nbformat_minor": 5
|
361 |
+
}
|
CLAP/msclap/configs/.ipynb_checkpoints/config-checkpoint.yml
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# TEXT ENCODER CONFIG
|
2 |
+
text_model: 'bert-base-uncased'
|
3 |
+
text_len: 100
|
4 |
+
transformer_embed_dim: 768
|
5 |
+
freeze_text_encoder_weights: True
|
6 |
+
|
7 |
+
# AUDIO ENCODER CONFIG
|
8 |
+
audioenc_name: 'Cnn14'
|
9 |
+
out_emb: 2048
|
10 |
+
sampling_rate: 44100
|
11 |
+
duration: 10
|
12 |
+
fmin: 50
|
13 |
+
fmax: 14000
|
14 |
+
n_fft: 1028
|
15 |
+
hop_size: 320
|
16 |
+
mel_bins: 64
|
17 |
+
window_size: 1024
|
18 |
+
|
19 |
+
# PROJECTION SPACE CONFIG
|
20 |
+
d_proj: 1024
|
21 |
+
temperature: 0.003
|
22 |
+
|
23 |
+
# TRAINING AND EVALUATION CONFIG
|
24 |
+
num_classes: 527
|
25 |
+
batch_size: 1024
|
26 |
+
demo: False
|
CLAP/msclap/configs/config.yml
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# TEXT ENCODER CONFIG
|
2 |
+
text_model: 'bert-base-uncased'
|
3 |
+
text_len: 100
|
4 |
+
transformer_embed_dim: 768
|
5 |
+
freeze_text_encoder_weights: True
|
6 |
+
|
7 |
+
# AUDIO ENCODER CONFIG
|
8 |
+
audioenc_name: 'Cnn14'
|
9 |
+
out_emb: 2048
|
10 |
+
sampling_rate: 44100
|
11 |
+
duration: 10
|
12 |
+
fmin: 50
|
13 |
+
fmax: 14000
|
14 |
+
n_fft: 1028
|
15 |
+
hop_size: 320
|
16 |
+
mel_bins: 64
|
17 |
+
window_size: 1024
|
18 |
+
|
19 |
+
# PROJECTION SPACE CONFIG
|
20 |
+
d_proj: 1024
|
21 |
+
temperature: 0.003
|
22 |
+
|
23 |
+
# TRAINING AND EVALUATION CONFIG
|
24 |
+
num_classes: 527
|
25 |
+
batch_size: 1024
|
26 |
+
demo: False
|
CLAP/msclap/esc50_dataset.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch.utils.data import Dataset
|
2 |
+
from torchvision.datasets.utils import download_url
|
3 |
+
from tqdm import tqdm
|
4 |
+
import pandas as pd
|
5 |
+
import os
|
6 |
+
import torch.nn as nn
|
7 |
+
import torch
|
8 |
+
|
9 |
+
class AudioDataset(Dataset):
|
10 |
+
def __init__(self, root: str, download: bool = True):
|
11 |
+
self.root = os.path.expanduser(root)
|
12 |
+
if download:
|
13 |
+
self.download()
|
14 |
+
|
15 |
+
def __getitem__(self, index):
|
16 |
+
raise NotImplementedError
|
17 |
+
|
18 |
+
def download(self):
|
19 |
+
raise NotImplementedError
|
20 |
+
|
21 |
+
def __len__(self):
|
22 |
+
raise NotImplementedError
|
23 |
+
|
24 |
+
|
25 |
+
class ESC50(AudioDataset):
|
26 |
+
base_folder = 'ESC-50-master'
|
27 |
+
url = "https://github.com/karolpiczak/ESC-50/archive/refs/heads/master.zip"
|
28 |
+
filename = "ESC-50-master.zip"
|
29 |
+
num_files_in_dir = 2000
|
30 |
+
audio_dir = 'audio'
|
31 |
+
label_col = 'category'
|
32 |
+
file_col = 'filename'
|
33 |
+
meta = {
|
34 |
+
'filename': os.path.join('meta','esc50.csv'),
|
35 |
+
}
|
36 |
+
|
37 |
+
def __init__(self, root, reading_transformations: nn.Module = None, download: bool = True):
|
38 |
+
super().__init__(root)
|
39 |
+
self._load_meta()
|
40 |
+
|
41 |
+
self.targets, self.audio_paths = [], []
|
42 |
+
self.pre_transformations = reading_transformations
|
43 |
+
print("Loading audio files")
|
44 |
+
# self.df['filename'] = os.path.join(self.root, self.base_folder, self.audio_dir) + os.sep + self.df['filename']
|
45 |
+
self.df['category'] = self.df['category'].str.replace('_',' ')
|
46 |
+
|
47 |
+
for _, row in tqdm(self.df.iterrows()):
|
48 |
+
file_path = os.path.join(self.root, self.base_folder, self.audio_dir, row[self.file_col])
|
49 |
+
self.targets.append(row[self.label_col])
|
50 |
+
self.audio_paths.append(file_path)
|
51 |
+
|
52 |
+
def _load_meta(self):
|
53 |
+
path = os.path.join(self.root, self.base_folder, self.meta['filename'])
|
54 |
+
|
55 |
+
self.df = pd.read_csv(path)
|
56 |
+
self.class_to_idx = {}
|
57 |
+
self.classes = [x.replace('_',' ') for x in sorted(self.df[self.label_col].unique())]
|
58 |
+
for i, category in enumerate(self.classes):
|
59 |
+
self.class_to_idx[category] = i
|
60 |
+
|
61 |
+
def __getitem__(self, index):
|
62 |
+
"""
|
63 |
+
Args:
|
64 |
+
index (int): Index
|
65 |
+
Returns:
|
66 |
+
tuple: (image, target) where target is index of the target class.
|
67 |
+
"""
|
68 |
+
file_path, target = self.audio_paths[index], self.targets[index]
|
69 |
+
idx = torch.tensor(self.class_to_idx[target])
|
70 |
+
one_hot_target = torch.zeros(len(self.classes)).scatter_(0, idx, 1).reshape(1,-1)
|
71 |
+
return file_path, target, one_hot_target
|
72 |
+
|
73 |
+
def __len__(self):
|
74 |
+
return len(self.audio_paths)
|
75 |
+
|
76 |
+
def download(self):
|
77 |
+
download_url(self.url, self.root, self.filename)
|
78 |
+
|
79 |
+
# extract file
|
80 |
+
from zipfile import ZipFile
|
81 |
+
with ZipFile(os.path.join(self.root, self.filename), 'r') as zip:
|
82 |
+
zip.extractall(path=self.root)
|
CLAP/msclap/models/.ipynb_checkpoints/audio-checkpoint.py
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from torchlibrosa.stft import Spectrogram, LogmelFilterBank
|
5 |
+
|
6 |
+
#
|
7 |
+
import torchaudio
|
8 |
+
import random
|
9 |
+
|
10 |
+
def get_audio_encoder(name: str):
|
11 |
+
if name == "Cnn14":
|
12 |
+
return Cnn14
|
13 |
+
else:
|
14 |
+
raise Exception('The audio encoder name {} is incorrect or not supported'.format(name))
|
15 |
+
|
16 |
+
|
17 |
+
class ConvBlock(nn.Module):
|
18 |
+
def __init__(self, in_channels, out_channels):
|
19 |
+
|
20 |
+
super(ConvBlock, self).__init__()
|
21 |
+
|
22 |
+
self.conv1 = nn.Conv2d(in_channels=in_channels,
|
23 |
+
out_channels=out_channels,
|
24 |
+
kernel_size=(3, 3), stride=(1, 1),
|
25 |
+
padding=(1, 1), bias=False)
|
26 |
+
|
27 |
+
self.conv2 = nn.Conv2d(in_channels=out_channels,
|
28 |
+
out_channels=out_channels,
|
29 |
+
kernel_size=(3, 3), stride=(1, 1),
|
30 |
+
padding=(1, 1), bias=False)
|
31 |
+
|
32 |
+
self.bn1 = nn.BatchNorm2d(out_channels)
|
33 |
+
self.bn2 = nn.BatchNorm2d(out_channels)
|
34 |
+
|
35 |
+
|
36 |
+
def forward(self, input, pool_size=(2, 2), pool_type='avg'):
|
37 |
+
|
38 |
+
x = input
|
39 |
+
x = F.relu_(self.bn1(self.conv1(x)))
|
40 |
+
x = F.relu_(self.bn2(self.conv2(x)))
|
41 |
+
if pool_type == 'max':
|
42 |
+
x = F.max_pool2d(x, kernel_size=pool_size)
|
43 |
+
elif pool_type == 'avg':
|
44 |
+
x = F.avg_pool2d(x, kernel_size=pool_size)
|
45 |
+
elif pool_type == 'avg+max':
|
46 |
+
x1 = F.avg_pool2d(x, kernel_size=pool_size)
|
47 |
+
x2 = F.max_pool2d(x, kernel_size=pool_size)
|
48 |
+
x = x1 + x2
|
49 |
+
else:
|
50 |
+
raise Exception('Incorrect argument!')
|
51 |
+
|
52 |
+
return x
|
53 |
+
|
54 |
+
|
55 |
+
class ConvBlock5x5(nn.Module):
|
56 |
+
def __init__(self, in_channels, out_channels):
|
57 |
+
|
58 |
+
super(ConvBlock5x5, self).__init__()
|
59 |
+
|
60 |
+
self.conv1 = nn.Conv2d(in_channels=in_channels,
|
61 |
+
out_channels=out_channels,
|
62 |
+
kernel_size=(5, 5), stride=(1, 1),
|
63 |
+
padding=(2, 2), bias=False)
|
64 |
+
|
65 |
+
self.bn1 = nn.BatchNorm2d(out_channels)
|
66 |
+
|
67 |
+
|
68 |
+
def forward(self, input, pool_size=(2, 2), pool_type='avg'):
|
69 |
+
|
70 |
+
x = input
|
71 |
+
x = F.relu_(self.bn1(self.conv1(x)))
|
72 |
+
if pool_type == 'max':
|
73 |
+
x = F.max_pool2d(x, kernel_size=pool_size)
|
74 |
+
elif pool_type == 'avg':
|
75 |
+
x = F.avg_pool2d(x, kernel_size=pool_size)
|
76 |
+
elif pool_type == 'avg+max':
|
77 |
+
x1 = F.avg_pool2d(x, kernel_size=pool_size)
|
78 |
+
x2 = F.max_pool2d(x, kernel_size=pool_size)
|
79 |
+
x = x1 + x2
|
80 |
+
else:
|
81 |
+
raise Exception('Incorrect argument!')
|
82 |
+
|
83 |
+
return x
|
84 |
+
|
85 |
+
|
86 |
+
class AttBlock(nn.Module):
|
87 |
+
def __init__(self, n_in, n_out, activation='linear', temperature=1.):
|
88 |
+
super(AttBlock, self).__init__()
|
89 |
+
|
90 |
+
self.activation = activation
|
91 |
+
self.temperature = temperature
|
92 |
+
self.att = nn.Conv1d(in_channels=n_in, out_channels=n_out, kernel_size=1, stride=1, padding=0, bias=True)
|
93 |
+
self.cla = nn.Conv1d(in_channels=n_in, out_channels=n_out, kernel_size=1, stride=1, padding=0, bias=True)
|
94 |
+
|
95 |
+
self.bn_att = nn.BatchNorm1d(n_out)
|
96 |
+
|
97 |
+
def forward(self, x):
|
98 |
+
# x: (n_samples, n_in, n_time)
|
99 |
+
norm_att = torch.softmax(torch.clamp(self.att(x), -10, 10), dim=-1)
|
100 |
+
cla = self.nonlinear_transform(self.cla(x))
|
101 |
+
x = torch.sum(norm_att * cla, dim=2)
|
102 |
+
return x, norm_att, cla
|
103 |
+
|
104 |
+
def nonlinear_transform(self, x):
|
105 |
+
if self.activation == 'linear':
|
106 |
+
return x
|
107 |
+
elif self.activation == 'sigmoid':
|
108 |
+
return torch.sigmoid(x)
|
109 |
+
|
110 |
+
|
111 |
+
class Cnn14(nn.Module):
|
112 |
+
def __init__(self, sample_rate, window_size, hop_size, mel_bins, fmin,
|
113 |
+
fmax, classes_num, out_emb):
|
114 |
+
|
115 |
+
super(Cnn14, self).__init__()
|
116 |
+
|
117 |
+
window = 'hann'
|
118 |
+
center = True
|
119 |
+
pad_mode = 'reflect'
|
120 |
+
ref = 1.0
|
121 |
+
amin = 1e-10
|
122 |
+
top_db = None
|
123 |
+
|
124 |
+
# Spectrogram extractor
|
125 |
+
self.spectrogram_extractor = Spectrogram(n_fft=window_size, hop_length=hop_size,
|
126 |
+
win_length=window_size, window=window, center=center, pad_mode=pad_mode,
|
127 |
+
freeze_parameters=True)
|
128 |
+
|
129 |
+
# Logmel feature extractor
|
130 |
+
self.logmel_extractor = LogmelFilterBank(sr=sample_rate, n_fft=window_size,
|
131 |
+
n_mels=mel_bins, fmin=fmin, fmax=fmax, ref=ref, amin=amin, top_db=top_db,
|
132 |
+
freeze_parameters=True)
|
133 |
+
|
134 |
+
|
135 |
+
self.freq_masking = torchaudio.transforms.FrequencyMasking(freq_mask_param=80)
|
136 |
+
self.time_masking = torchaudio.transforms.TimeMasking(80)
|
137 |
+
|
138 |
+
|
139 |
+
self.bn0 = nn.BatchNorm2d(64)
|
140 |
+
|
141 |
+
self.conv_block1 = ConvBlock(in_channels=1, out_channels=64)
|
142 |
+
self.conv_block2 = ConvBlock(in_channels=64, out_channels=128)
|
143 |
+
self.conv_block3 = ConvBlock(in_channels=128, out_channels=256)
|
144 |
+
self.conv_block4 = ConvBlock(in_channels=256, out_channels=512)
|
145 |
+
self.conv_block5 = ConvBlock(in_channels=512, out_channels=1024)
|
146 |
+
self.conv_block6 = ConvBlock(in_channels=1024, out_channels=2048)
|
147 |
+
|
148 |
+
# out_emb is 2048 for best Cnn14
|
149 |
+
self.fc1 = nn.Linear(2048, out_emb, bias=True)
|
150 |
+
self.fc_audioset = nn.Linear(out_emb, classes_num, bias=True)
|
151 |
+
|
152 |
+
def forward(self, input, mixup_lambda=None):
|
153 |
+
"""
|
154 |
+
Input: (batch_size, data_length)
|
155 |
+
"""
|
156 |
+
|
157 |
+
|
158 |
+
|
159 |
+
|
160 |
+
x = self.spectrogram_extractor(input) # (batch_size, 1, time_steps, freq_bins)
|
161 |
+
x = self.logmel_extractor(x) # (batch_size, 1, time_steps, mel_bins)
|
162 |
+
|
163 |
+
random_aug_freq = random.uniform(0,1)
|
164 |
+
random_aug_time = random.uniform(0,1)
|
165 |
+
|
166 |
+
if random_aug_freq < 0.2:
|
167 |
+
x = self.freq_masking(x)
|
168 |
+
if random_aug_time < 0.2:
|
169 |
+
x = self.time_masking(x)
|
170 |
+
|
171 |
+
|
172 |
+
|
173 |
+
x = x.transpose(1, 3)
|
174 |
+
x = self.bn0(x)
|
175 |
+
x = x.transpose(1, 3)
|
176 |
+
|
177 |
+
x = self.conv_block1(x, pool_size=(2, 2), pool_type='avg')
|
178 |
+
x = F.dropout(x, p=0.2, training=self.training)
|
179 |
+
x = self.conv_block2(x, pool_size=(2, 2), pool_type='avg')
|
180 |
+
x = F.dropout(x, p=0.2, training=self.training)
|
181 |
+
x = self.conv_block3(x, pool_size=(2, 2), pool_type='avg')
|
182 |
+
x = F.dropout(x, p=0.2, training=self.training)
|
183 |
+
x = self.conv_block4(x, pool_size=(2, 2), pool_type='avg')
|
184 |
+
x = F.dropout(x, p=0.2, training=self.training)
|
185 |
+
x = self.conv_block5(x, pool_size=(2, 2), pool_type='avg')
|
186 |
+
x = F.dropout(x, p=0.2, training=self.training)
|
187 |
+
x = self.conv_block6(x, pool_size=(1, 1), pool_type='avg')
|
188 |
+
x = F.dropout(x, p=0.2, training=self.training)
|
189 |
+
x = torch.mean(x, dim=3)
|
190 |
+
|
191 |
+
(x1, _) = torch.max(x, dim=2)
|
192 |
+
x2 = torch.mean(x, dim=2)
|
193 |
+
x = x1 + x2
|
194 |
+
x = F.dropout(x, p=0.5, training=self.training)
|
195 |
+
x = F.relu_(self.fc1(x))
|
196 |
+
embedding = F.dropout(x, p=0.5, training=self.training)
|
197 |
+
clipwise_output = torch.sigmoid(self.fc_audioset(x))
|
198 |
+
|
199 |
+
output_dict = {'clipwise_output': clipwise_output, 'embedding': embedding}
|
200 |
+
|
201 |
+
return output_dict
|
CLAP/msclap/models/.ipynb_checkpoints/clap-checkpoint.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from torch import nn
|
5 |
+
from transformers import AutoModel
|
6 |
+
from .audio import get_audio_encoder
|
7 |
+
|
8 |
+
class Projection(nn.Module):
|
9 |
+
def __init__(self, d_in: int, d_out: int, p: float=0.5) -> None:
|
10 |
+
super().__init__()
|
11 |
+
self.linear1 = nn.Linear(d_in, d_out, bias=False)
|
12 |
+
self.linear2 = nn.Linear(d_out, d_out, bias=False)
|
13 |
+
self.layer_norm = nn.LayerNorm(d_out)
|
14 |
+
self.drop = nn.Dropout(p)
|
15 |
+
|
16 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
17 |
+
embed1 = self.linear1(x)
|
18 |
+
embed2 = self.drop(self.linear2(F.gelu(embed1)))
|
19 |
+
embeds = self.layer_norm(embed1 + embed2)
|
20 |
+
return embeds
|
21 |
+
|
22 |
+
class AudioEncoder(nn.Module):
|
23 |
+
def __init__(self, audioenc_name:str, d_in: int, d_out: int, sample_rate: int, window_size: int,
|
24 |
+
hop_size: int, mel_bins: int, fmin: int, fmax: int, classes_num: int) -> None:
|
25 |
+
super().__init__()
|
26 |
+
|
27 |
+
audio_encoder = get_audio_encoder(audioenc_name)
|
28 |
+
|
29 |
+
self.base = audio_encoder(
|
30 |
+
sample_rate, window_size,
|
31 |
+
hop_size, mel_bins, fmin, fmax,
|
32 |
+
classes_num, d_in)
|
33 |
+
|
34 |
+
self.projection = Projection(d_in, d_out)
|
35 |
+
|
36 |
+
def forward(self, x):
|
37 |
+
out_dict = self.base(x)
|
38 |
+
audio_features, audio_classification_output = out_dict['embedding'], out_dict['clipwise_output']
|
39 |
+
projected_vec = self.projection(audio_features)
|
40 |
+
return projected_vec, audio_classification_output
|
41 |
+
|
42 |
+
class TextEncoder(nn.Module):
|
43 |
+
def __init__(self, d_out: int, text_model: str, transformer_embed_dim: int) -> None:
|
44 |
+
super().__init__()
|
45 |
+
self.base = AutoModel.from_pretrained(text_model)
|
46 |
+
|
47 |
+
self.projection = Projection(transformer_embed_dim, d_out)
|
48 |
+
|
49 |
+
def forward(self, x):
|
50 |
+
out = self.base(**x)[0]
|
51 |
+
out = out[:, 0, :] # get CLS token output
|
52 |
+
projected_vec = self.projection(out)
|
53 |
+
return projected_vec
|
54 |
+
|
55 |
+
class CLAP(nn.Module):
|
56 |
+
def __init__(self,
|
57 |
+
# audio
|
58 |
+
audioenc_name: str,
|
59 |
+
sample_rate: int,
|
60 |
+
window_size: int,
|
61 |
+
hop_size: int,
|
62 |
+
mel_bins: int,
|
63 |
+
fmin: int,
|
64 |
+
fmax: int,
|
65 |
+
classes_num: int,
|
66 |
+
out_emb: int,
|
67 |
+
# text
|
68 |
+
text_model: str,
|
69 |
+
transformer_embed_dim: int,
|
70 |
+
# common
|
71 |
+
d_proj: int,
|
72 |
+
):
|
73 |
+
super().__init__()
|
74 |
+
|
75 |
+
|
76 |
+
self.audio_encoder = AudioEncoder(
|
77 |
+
audioenc_name, out_emb, d_proj,
|
78 |
+
sample_rate, window_size, hop_size, mel_bins, fmin, fmax, classes_num)
|
79 |
+
|
80 |
+
self.caption_encoder = TextEncoder(
|
81 |
+
d_proj, text_model, transformer_embed_dim
|
82 |
+
)
|
83 |
+
|
84 |
+
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
85 |
+
|
86 |
+
def forward(self, audio, text):
|
87 |
+
audio_embed, _ = self.audio_encoder(audio)
|
88 |
+
caption_embed = self.caption_encoder(text)
|
89 |
+
|
90 |
+
return caption_embed, audio_embed, self.logit_scale.exp()
|
CLAP/msclap/models/.ipynb_checkpoints/utils-checkpoint.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import yaml
|
3 |
+
import sys
|
4 |
+
|
5 |
+
def read_config_as_args(config_path,args=None,is_config_str=False):
|
6 |
+
return_dict = {}
|
7 |
+
|
8 |
+
if config_path is not None:
|
9 |
+
if is_config_str:
|
10 |
+
yml_config = yaml.load(config_path, Loader=yaml.FullLoader)
|
11 |
+
else:
|
12 |
+
with open(config_path, "r") as f:
|
13 |
+
yml_config = yaml.load(f, Loader=yaml.FullLoader)
|
14 |
+
|
15 |
+
if args != None:
|
16 |
+
for k, v in yml_config.items():
|
17 |
+
if k in args.__dict__:
|
18 |
+
args.__dict__[k] = v
|
19 |
+
else:
|
20 |
+
sys.stderr.write("Ignored unknown parameter {} in yaml.\n".format(k))
|
21 |
+
else:
|
22 |
+
for k, v in yml_config.items():
|
23 |
+
return_dict[k] = v
|
24 |
+
|
25 |
+
args = args if args != None else return_dict
|
26 |
+
return argparse.Namespace(**args)
|
CLAP/msclap/models/__init__.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
from . import clap
|
2 |
+
from . import audio
|
3 |
+
from . import utils
|
CLAP/msclap/models/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (234 Bytes). View file
|
|
CLAP/msclap/models/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (302 Bytes). View file
|
|
CLAP/msclap/models/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (234 Bytes). View file
|
|
CLAP/msclap/models/__pycache__/audio.cpython-310.pyc
ADDED
Binary file (5.39 kB). View file
|
|
CLAP/msclap/models/__pycache__/audio.cpython-311.pyc
ADDED
Binary file (10.9 kB). View file
|
|
CLAP/msclap/models/__pycache__/audio.cpython-38.pyc
ADDED
Binary file (5.24 kB). View file
|
|
CLAP/msclap/models/__pycache__/clap.cpython-310.pyc
ADDED
Binary file (3.67 kB). View file
|
|
CLAP/msclap/models/__pycache__/clap.cpython-311.pyc
ADDED
Binary file (6.42 kB). View file
|
|
CLAP/msclap/models/__pycache__/clap.cpython-38.pyc
ADDED
Binary file (3.53 kB). View file
|
|
CLAP/msclap/models/__pycache__/utils.cpython-310.pyc
ADDED
Binary file (774 Bytes). View file
|
|
CLAP/msclap/models/__pycache__/utils.cpython-311.pyc
ADDED
Binary file (1.54 kB). View file
|
|
CLAP/msclap/models/__pycache__/utils.cpython-38.pyc
ADDED
Binary file (741 Bytes). View file
|
|
CLAP/msclap/models/audio.py
ADDED
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from torchlibrosa.stft import Spectrogram, LogmelFilterBank
|
5 |
+
|
6 |
+
#
|
7 |
+
import torchaudio
|
8 |
+
import random
|
9 |
+
|
10 |
+
def get_audio_encoder(name: str):
|
11 |
+
if name == "Cnn14":
|
12 |
+
return Cnn14
|
13 |
+
else:
|
14 |
+
raise Exception('The audio encoder name {} is incorrect or not supported'.format(name))
|
15 |
+
|
16 |
+
|
17 |
+
class ConvBlock(nn.Module):
|
18 |
+
def __init__(self, in_channels, out_channels):
|
19 |
+
|
20 |
+
super(ConvBlock, self).__init__()
|
21 |
+
|
22 |
+
self.conv1 = nn.Conv2d(in_channels=in_channels,
|
23 |
+
out_channels=out_channels,
|
24 |
+
kernel_size=(3, 3), stride=(1, 1),
|
25 |
+
padding=(1, 1), bias=False)
|
26 |
+
|
27 |
+
self.conv2 = nn.Conv2d(in_channels=out_channels,
|
28 |
+
out_channels=out_channels,
|
29 |
+
kernel_size=(3, 3), stride=(1, 1),
|
30 |
+
padding=(1, 1), bias=False)
|
31 |
+
|
32 |
+
self.bn1 = nn.BatchNorm2d(out_channels)
|
33 |
+
self.bn2 = nn.BatchNorm2d(out_channels)
|
34 |
+
|
35 |
+
|
36 |
+
def forward(self, input, pool_size=(2, 2), pool_type='avg'):
|
37 |
+
|
38 |
+
x = input
|
39 |
+
x = F.relu_(self.bn1(self.conv1(x)))
|
40 |
+
x = F.relu_(self.bn2(self.conv2(x)))
|
41 |
+
if pool_type == 'max':
|
42 |
+
x = F.max_pool2d(x, kernel_size=pool_size)
|
43 |
+
elif pool_type == 'avg':
|
44 |
+
x = F.avg_pool2d(x, kernel_size=pool_size)
|
45 |
+
elif pool_type == 'avg+max':
|
46 |
+
x1 = F.avg_pool2d(x, kernel_size=pool_size)
|
47 |
+
x2 = F.max_pool2d(x, kernel_size=pool_size)
|
48 |
+
x = x1 + x2
|
49 |
+
else:
|
50 |
+
raise Exception('Incorrect argument!')
|
51 |
+
|
52 |
+
return x
|
53 |
+
|
54 |
+
|
55 |
+
class ConvBlock5x5(nn.Module):
|
56 |
+
def __init__(self, in_channels, out_channels):
|
57 |
+
|
58 |
+
super(ConvBlock5x5, self).__init__()
|
59 |
+
|
60 |
+
self.conv1 = nn.Conv2d(in_channels=in_channels,
|
61 |
+
out_channels=out_channels,
|
62 |
+
kernel_size=(5, 5), stride=(1, 1),
|
63 |
+
padding=(2, 2), bias=False)
|
64 |
+
|
65 |
+
self.bn1 = nn.BatchNorm2d(out_channels)
|
66 |
+
|
67 |
+
|
68 |
+
def forward(self, input, pool_size=(2, 2), pool_type='avg'):
|
69 |
+
|
70 |
+
x = input
|
71 |
+
x = F.relu_(self.bn1(self.conv1(x)))
|
72 |
+
if pool_type == 'max':
|
73 |
+
x = F.max_pool2d(x, kernel_size=pool_size)
|
74 |
+
elif pool_type == 'avg':
|
75 |
+
x = F.avg_pool2d(x, kernel_size=pool_size)
|
76 |
+
elif pool_type == 'avg+max':
|
77 |
+
x1 = F.avg_pool2d(x, kernel_size=pool_size)
|
78 |
+
x2 = F.max_pool2d(x, kernel_size=pool_size)
|
79 |
+
x = x1 + x2
|
80 |
+
else:
|
81 |
+
raise Exception('Incorrect argument!')
|
82 |
+
|
83 |
+
return x
|
84 |
+
|
85 |
+
|
86 |
+
class AttBlock(nn.Module):
|
87 |
+
def __init__(self, n_in, n_out, activation='linear', temperature=1.):
|
88 |
+
super(AttBlock, self).__init__()
|
89 |
+
|
90 |
+
self.activation = activation
|
91 |
+
self.temperature = temperature
|
92 |
+
self.att = nn.Conv1d(in_channels=n_in, out_channels=n_out, kernel_size=1, stride=1, padding=0, bias=True)
|
93 |
+
self.cla = nn.Conv1d(in_channels=n_in, out_channels=n_out, kernel_size=1, stride=1, padding=0, bias=True)
|
94 |
+
|
95 |
+
self.bn_att = nn.BatchNorm1d(n_out)
|
96 |
+
|
97 |
+
def forward(self, x):
|
98 |
+
# x: (n_samples, n_in, n_time)
|
99 |
+
norm_att = torch.softmax(torch.clamp(self.att(x), -10, 10), dim=-1)
|
100 |
+
cla = self.nonlinear_transform(self.cla(x))
|
101 |
+
x = torch.sum(norm_att * cla, dim=2)
|
102 |
+
return x, norm_att, cla
|
103 |
+
|
104 |
+
def nonlinear_transform(self, x):
|
105 |
+
if self.activation == 'linear':
|
106 |
+
return x
|
107 |
+
elif self.activation == 'sigmoid':
|
108 |
+
return torch.sigmoid(x)
|
109 |
+
|
110 |
+
|
111 |
+
class Cnn14(nn.Module):
|
112 |
+
def __init__(self, sample_rate, window_size, hop_size, mel_bins, fmin,
|
113 |
+
fmax, classes_num, out_emb):
|
114 |
+
|
115 |
+
super(Cnn14, self).__init__()
|
116 |
+
|
117 |
+
window = 'hann'
|
118 |
+
center = True
|
119 |
+
pad_mode = 'reflect'
|
120 |
+
ref = 1.0
|
121 |
+
amin = 1e-10
|
122 |
+
top_db = None
|
123 |
+
|
124 |
+
# Spectrogram extractor
|
125 |
+
self.spectrogram_extractor = Spectrogram(n_fft=window_size, hop_length=hop_size,
|
126 |
+
win_length=window_size, window=window, center=center, pad_mode=pad_mode,
|
127 |
+
freeze_parameters=True)
|
128 |
+
|
129 |
+
# Logmel feature extractor
|
130 |
+
self.logmel_extractor = LogmelFilterBank(sr=sample_rate, n_fft=window_size,
|
131 |
+
n_mels=mel_bins, fmin=fmin, fmax=fmax, ref=ref, amin=amin, top_db=top_db,
|
132 |
+
freeze_parameters=True)
|
133 |
+
|
134 |
+
|
135 |
+
self.freq_masking = torchaudio.transforms.FrequencyMasking(freq_mask_param=80)
|
136 |
+
self.time_masking = torchaudio.transforms.TimeMasking(80)
|
137 |
+
|
138 |
+
|
139 |
+
self.bn0 = nn.BatchNorm2d(64)
|
140 |
+
|
141 |
+
self.conv_block1 = ConvBlock(in_channels=1, out_channels=64)
|
142 |
+
self.conv_block2 = ConvBlock(in_channels=64, out_channels=128)
|
143 |
+
self.conv_block3 = ConvBlock(in_channels=128, out_channels=256)
|
144 |
+
self.conv_block4 = ConvBlock(in_channels=256, out_channels=512)
|
145 |
+
self.conv_block5 = ConvBlock(in_channels=512, out_channels=1024)
|
146 |
+
self.conv_block6 = ConvBlock(in_channels=1024, out_channels=2048)
|
147 |
+
|
148 |
+
# out_emb is 2048 for best Cnn14
|
149 |
+
self.fc1 = nn.Linear(2048, out_emb, bias=True)
|
150 |
+
self.fc_audioset = nn.Linear(out_emb, classes_num, bias=True)
|
151 |
+
|
152 |
+
def forward(self, input, mixup_lambda=None, use_aug=False):
|
153 |
+
"""
|
154 |
+
Input: (batch_size, data_length)
|
155 |
+
"""
|
156 |
+
|
157 |
+
x = self.spectrogram_extractor(input) # (batch_size, 1, time_steps, freq_bins)
|
158 |
+
x = self.logmel_extractor(x) # (batch_size, 1, time_steps, mel_bins)
|
159 |
+
|
160 |
+
# if use_aug:
|
161 |
+
# random_aug_freq = random.uniform(0,1)
|
162 |
+
# random_aug_time = random.uniform(0,1)
|
163 |
+
# if random_aug_freq < 0.2:
|
164 |
+
# x = self.freq_masking(x)
|
165 |
+
# if random_aug_time < 0.2:
|
166 |
+
# x = self.time_masking(x)
|
167 |
+
|
168 |
+
x = x.transpose(1, 3)
|
169 |
+
x = self.bn0(x)
|
170 |
+
x = x.transpose(1, 3)
|
171 |
+
|
172 |
+
x = self.conv_block1(x, pool_size=(2, 2), pool_type='avg')
|
173 |
+
x = F.dropout(x, p=0.2, training=self.training)
|
174 |
+
x = self.conv_block2(x, pool_size=(2, 2), pool_type='avg')
|
175 |
+
x = F.dropout(x, p=0.2, training=self.training)
|
176 |
+
x = self.conv_block3(x, pool_size=(2, 2), pool_type='avg')
|
177 |
+
x = F.dropout(x, p=0.2, training=self.training)
|
178 |
+
x = self.conv_block4(x, pool_size=(2, 2), pool_type='avg')
|
179 |
+
x = F.dropout(x, p=0.2, training=self.training)
|
180 |
+
x = self.conv_block5(x, pool_size=(2, 2), pool_type='avg')
|
181 |
+
x = F.dropout(x, p=0.2, training=self.training)
|
182 |
+
x = self.conv_block6(x, pool_size=(1, 1), pool_type='avg')
|
183 |
+
x = F.dropout(x, p=0.2, training=self.training)
|
184 |
+
|
185 |
+
x = torch.mean(x, dim=3)
|
186 |
+
|
187 |
+
x_inner_layer = x.clone()
|
188 |
+
|
189 |
+
(x1, _) = torch.max(x, dim=2)
|
190 |
+
x2 = torch.mean(x, dim=2)
|
191 |
+
x = x1 + x2
|
192 |
+
x = F.dropout(x, p=0.5, training=self.training)
|
193 |
+
x = F.relu_(self.fc1(x))
|
194 |
+
embedding = F.dropout(x, p=0.5, training=self.training)
|
195 |
+
clipwise_output = torch.sigmoid(self.fc_audioset(x))
|
196 |
+
|
197 |
+
output_dict = {'clipwise_output': clipwise_output, 'embedding': embedding, 'inner_layer': x_inner_layer}
|
198 |
+
|
199 |
+
return output_dict
|
200 |
+
|
CLAP/msclap/models/clap.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from torch import nn
|
5 |
+
from transformers import AutoModel
|
6 |
+
from .audio import get_audio_encoder
|
7 |
+
|
8 |
+
class Projection(nn.Module):
|
9 |
+
def __init__(self, d_in: int, d_out: int, p: float=0.5) -> None:
|
10 |
+
super().__init__()
|
11 |
+
self.linear1 = nn.Linear(d_in, d_out, bias=False)
|
12 |
+
self.linear2 = nn.Linear(d_out, d_out, bias=False)
|
13 |
+
self.layer_norm = nn.LayerNorm(d_out)
|
14 |
+
self.drop = nn.Dropout(p)
|
15 |
+
|
16 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
17 |
+
embed1 = self.linear1(x)
|
18 |
+
embed2 = self.drop(self.linear2(F.gelu(embed1)))
|
19 |
+
embeds = self.layer_norm(embed1 + embed2)
|
20 |
+
return embeds
|
21 |
+
|
22 |
+
class AudioEncoder(nn.Module):
|
23 |
+
def __init__(self, audioenc_name:str, d_in: int, d_out: int, sample_rate: int, window_size: int,
|
24 |
+
hop_size: int, mel_bins: int, fmin: int, fmax: int, classes_num: int) -> None:
|
25 |
+
super().__init__()
|
26 |
+
|
27 |
+
audio_encoder = get_audio_encoder(audioenc_name)
|
28 |
+
|
29 |
+
self.base = audio_encoder(
|
30 |
+
sample_rate, window_size,
|
31 |
+
hop_size, mel_bins, fmin, fmax,
|
32 |
+
classes_num, d_in,
|
33 |
+
)
|
34 |
+
|
35 |
+
self.projection = Projection(d_in, d_out)
|
36 |
+
|
37 |
+
def forward(self, x, use_aug=False):
|
38 |
+
out_dict = self.base(x, use_aug=use_aug)
|
39 |
+
audio_features, audio_classification_output = out_dict['embedding'], out_dict['clipwise_output']
|
40 |
+
audio_inner_layer = out_dict['inner_layer']
|
41 |
+
projected_vec = self.projection(audio_features)
|
42 |
+
return projected_vec, audio_classification_output, audio_inner_layer
|
43 |
+
|
44 |
+
class TextEncoder(nn.Module):
|
45 |
+
def __init__(self, d_out: int, text_model: str, transformer_embed_dim: int) -> None:
|
46 |
+
super().__init__()
|
47 |
+
self.base = AutoModel.from_pretrained(text_model)
|
48 |
+
|
49 |
+
self.projection = Projection(transformer_embed_dim, d_out)
|
50 |
+
|
51 |
+
def forward(self, x):
|
52 |
+
out = self.base(**x)[0]
|
53 |
+
out = out[:, 0, :] # get CLS token output
|
54 |
+
projected_vec = self.projection(out)
|
55 |
+
return projected_vec
|
56 |
+
|
57 |
+
class CLAP(nn.Module):
|
58 |
+
def __init__(self,
|
59 |
+
# audio
|
60 |
+
audioenc_name: str,
|
61 |
+
sample_rate: int,
|
62 |
+
window_size: int,
|
63 |
+
hop_size: int,
|
64 |
+
mel_bins: int,
|
65 |
+
fmin: int,
|
66 |
+
fmax: int,
|
67 |
+
classes_num: int,
|
68 |
+
out_emb: int,
|
69 |
+
# text
|
70 |
+
text_model: str,
|
71 |
+
transformer_embed_dim: int,
|
72 |
+
# common
|
73 |
+
d_proj: int,
|
74 |
+
):
|
75 |
+
super().__init__()
|
76 |
+
|
77 |
+
|
78 |
+
self.audio_encoder = AudioEncoder(
|
79 |
+
audioenc_name, out_emb, d_proj,
|
80 |
+
sample_rate, window_size, hop_size, mel_bins, fmin, fmax, classes_num)
|
81 |
+
|
82 |
+
self.caption_encoder = TextEncoder(
|
83 |
+
d_proj, text_model, transformer_embed_dim
|
84 |
+
)
|
85 |
+
|
86 |
+
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
87 |
+
|
88 |
+
def forward(self, audio, text):
|
89 |
+
audio_embed, _, _ = self.audio_encoder(audio)
|
90 |
+
caption_embed = self.caption_encoder(text)
|
91 |
+
|
92 |
+
return caption_embed, audio_embed, self.logit_scale.exp()
|
CLAP/msclap/models/utils.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import yaml
|
3 |
+
import sys
|
4 |
+
|
5 |
+
def read_config_as_args(config_path,args=None,is_config_str=False):
|
6 |
+
return_dict = {}
|
7 |
+
|
8 |
+
if config_path is not None:
|
9 |
+
if is_config_str:
|
10 |
+
yml_config = yaml.load(config_path, Loader=yaml.FullLoader)
|
11 |
+
else:
|
12 |
+
with open(config_path, "r") as f:
|
13 |
+
yml_config = yaml.load(f, Loader=yaml.FullLoader)
|
14 |
+
|
15 |
+
if args != None:
|
16 |
+
for k, v in yml_config.items():
|
17 |
+
if k in args.__dict__:
|
18 |
+
args.__dict__[k] = v
|
19 |
+
else:
|
20 |
+
sys.stderr.write("Ignored unknown parameter {} in yaml.\n".format(k))
|
21 |
+
else:
|
22 |
+
for k, v in yml_config.items():
|
23 |
+
return_dict[k] = v
|
24 |
+
|
25 |
+
args = args if args != None else return_dict
|
26 |
+
return argparse.Namespace(**args)
|
CLAP/msclap/zero_shot_classification.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This is an example using CLAP to perform zeroshot
|
3 |
+
classification on ESC50 (https://github.com/karolpiczak/ESC-50).
|
4 |
+
"""
|
5 |
+
|
6 |
+
from CLAPWrapper import CLAPWrapper
|
7 |
+
from esc50_dataset import ESC50
|
8 |
+
import torch.nn.functional as F
|
9 |
+
import numpy as np
|
10 |
+
from tqdm import tqdm
|
11 |
+
from sklearn.metrics import accuracy_score
|
12 |
+
|
13 |
+
# Load dataset
|
14 |
+
dataset = ESC50(root="data_path", download=False)
|
15 |
+
prompt = 'this is a sound of '
|
16 |
+
y = [prompt + x for x in dataset.classes]
|
17 |
+
|
18 |
+
|
19 |
+
# Load and initialize CLAP
|
20 |
+
weights_path = "weights_path"
|
21 |
+
clap_model = CLAPWrapper(weights_path, use_cuda=False)
|
22 |
+
|
23 |
+
|
24 |
+
# Computing text embeddings
|
25 |
+
text_embeddings = clap_model.get_text_embeddings(y)
|
26 |
+
|
27 |
+
# Computing audio embeddings
|
28 |
+
y_preds, y_labels = [], []
|
29 |
+
for i in tqdm(range(len(dataset))):
|
30 |
+
x, _, one_hot_target = dataset.__getitem__(i)
|
31 |
+
audio_embeddings = clap_model.get_audio_embeddings([x], resample=True)
|
32 |
+
similarity = clap_model.compute_similarity(audio_embeddings, text_embeddings)
|
33 |
+
y_pred = F.softmax(similarity.detach().cpu(), dim=1).numpy()
|
34 |
+
y_preds.append(y_pred)
|
35 |
+
y_labels.append(one_hot_target.detach().cpu().numpy())
|
36 |
+
|
37 |
+
y_labels, y_preds = np.concatenate(y_labels, axis=0), np.concatenate(y_preds, axis=0)
|
38 |
+
acc = accuracy_score(np.argmax(y_labels, axis=1), np.argmax(y_preds, axis=1))
|
39 |
+
print('ESC50 Accuracy {}'.format(acc))
|
40 |
+
|
41 |
+
"""
|
42 |
+
The output:
|
43 |
+
|
44 |
+
ESC50 Accuracy: 82.6%
|
45 |
+
|
46 |
+
"""
|
CLAP/msclap/zero_shot_predictions.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This is an example using CLAP for zero-shot
|
3 |
+
inference using ESC50 (https://github.com/karolpiczak/ESC-50).
|
4 |
+
"""
|
5 |
+
|
6 |
+
from CLAPWrapper import CLAPWrapper
|
7 |
+
from esc50_dataset import ESC50
|
8 |
+
import torch.nn.functional as F
|
9 |
+
|
10 |
+
# Load ESC50 dataset
|
11 |
+
dataset = ESC50(root="data_path", download=True) # set download=True when dataset is not downloaded
|
12 |
+
audio_file, target, one_hot_target = dataset[1000]
|
13 |
+
audio_file = [audio_file]
|
14 |
+
prompt = 'this is a sound of '
|
15 |
+
y = [prompt + x for x in dataset.classes]
|
16 |
+
|
17 |
+
# Load and initialize CLAP
|
18 |
+
weights_path = "weights_path"
|
19 |
+
|
20 |
+
# Setting use_cuda = True will load the model on a GPU using CUDA
|
21 |
+
clap_model = CLAPWrapper(weights_path, use_cuda=False)
|
22 |
+
|
23 |
+
# compute text embeddings from natural text
|
24 |
+
text_embeddings = clap_model.get_text_embeddings(y)
|
25 |
+
|
26 |
+
# compute the audio embeddings from an audio file
|
27 |
+
audio_embeddings = clap_model.get_audio_embeddings(audio_file, resample=True)
|
28 |
+
|
29 |
+
# compute the similarity between audio_embeddings and text_embeddings
|
30 |
+
similarity = clap_model.compute_similarity(audio_embeddings, text_embeddings)
|
31 |
+
|
32 |
+
similarity = F.softmax(similarity, dim=1)
|
33 |
+
values, indices = similarity[0].topk(5)
|
34 |
+
|
35 |
+
# view the results
|
36 |
+
print("Ground Truth: {}".format(target))
|
37 |
+
print("Top predictions:\n")
|
38 |
+
for value, index in zip(values, indices):
|
39 |
+
print(f"{dataset.classes[index]:>16s}: {100 * value.item():.2f}%")
|
40 |
+
|
41 |
+
"""
|
42 |
+
The output (the exact numbers may vary):
|
43 |
+
|
44 |
+
Ground Truth: coughing
|
45 |
+
Top predictions:
|
46 |
+
|
47 |
+
coughing: 86.34%
|
48 |
+
sneezing: 9.30%
|
49 |
+
drinking sipping: 1.31%
|
50 |
+
laughing: 1.20%
|
51 |
+
glass breaking: 0.81%
|
52 |
+
"""
|
README.md
CHANGED
@@ -8,6 +8,7 @@ sdk_version: 4.29.0
|
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
|
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
11 |
+
python_version: 3.10.13
|
12 |
---
|
13 |
|
14 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
ldm/modules/encoders/audio_projector_res.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
# from ldm.modules.attention import SpatialTransformer, BasicTransformerBlock
|
5 |
+
|
6 |
+
from torch import nn, einsum
|
7 |
+
from einops import rearrange, repeat
|
8 |
+
|
9 |
+
#k,q will be from audio
|
10 |
+
|
11 |
+
class MyCrossAttention(nn.Module):
|
12 |
+
def __init__(self, device="cuda", audio_dim = 1024, context_dim = 768, dropout=0.0, h = 8, dim_head=40):
|
13 |
+
super().__init__()
|
14 |
+
self.h = h
|
15 |
+
inner_dim = dim_head * h
|
16 |
+
self.scale = dim_head ** -0.5
|
17 |
+
|
18 |
+
self.to_q_adapter = nn.Linear(context_dim, inner_dim, bias=False)
|
19 |
+
self.to_k_adapter = nn.Linear(context_dim, inner_dim, bias=False)
|
20 |
+
self.to_v_adapter = nn.Linear(context_dim, inner_dim, bias=False)
|
21 |
+
|
22 |
+
def forward(self, audio):
|
23 |
+
q_adapter = self.to_q_adapter(audio) #from text
|
24 |
+
k_adapter = self.to_k_adapter(audio)
|
25 |
+
v_adapter = self.to_v_adapter(audio)
|
26 |
+
|
27 |
+
q_adapter, k_adapter, v_adapter = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=self.h), (q_adapter, k_adapter, v_adapter))
|
28 |
+
|
29 |
+
sim_adapter = einsum('b i d, b j d -> b i j', q_adapter, k_adapter) * self.scale
|
30 |
+
|
31 |
+
attn_adapter = sim_adapter.softmax(dim=-1)
|
32 |
+
|
33 |
+
out = einsum('b i j, b j d -> b i d', attn_adapter, v_adapter)
|
34 |
+
out = rearrange(out, '(b h) n d -> b n (h d)', h=self.h)
|
35 |
+
# print(f'ca out shape is: {out.shape}')
|
36 |
+
|
37 |
+
return out
|
38 |
+
|
39 |
+
|
40 |
+
class Adapter(nn.Module):
|
41 |
+
def __init__(self, device="cuda", audio_dim = 1024, context_dim = 768, dropout=0.0, h = 8, dim_head=40, audio_token_count = 10, initial_channel_dim=1, transformer_layer_count=4):
|
42 |
+
super(Adapter, self).__init__()
|
43 |
+
self.h = h
|
44 |
+
inner_dim = dim_head * h
|
45 |
+
|
46 |
+
audio_att_inner_dim = audio_token_count
|
47 |
+
|
48 |
+
self.audio_emb_projection = nn.Sequential(
|
49 |
+
nn.Conv1d(initial_channel_dim, audio_att_inner_dim, kernel_size = 17, stride = 1, padding = 8),
|
50 |
+
nn.GELU(),
|
51 |
+
nn.Conv1d(audio_att_inner_dim, audio_att_inner_dim, kernel_size = 17, stride = 1, padding = 8),
|
52 |
+
nn.GELU(),
|
53 |
+
nn.LayerNorm([audio_att_inner_dim, audio_dim]),
|
54 |
+
nn.Conv1d(audio_att_inner_dim, audio_att_inner_dim, kernel_size = 17, stride = 1, padding = 8),
|
55 |
+
nn.GELU(),
|
56 |
+
nn.LayerNorm([audio_att_inner_dim, audio_dim]),
|
57 |
+
nn.ConvTranspose1d(audio_att_inner_dim, audio_att_inner_dim, kernel_size = 17, stride=3, padding=7),
|
58 |
+
nn.GELU(),
|
59 |
+
nn.LayerNorm([audio_att_inner_dim, 3*audio_dim]),
|
60 |
+
nn.GELU(),
|
61 |
+
nn.Conv1d(audio_att_inner_dim, audio_att_inner_dim, kernel_size = 17, stride=4, padding=7),
|
62 |
+
nn.Dropout(dropout)
|
63 |
+
)
|
64 |
+
|
65 |
+
#create a stack of MyCrossAttention layers
|
66 |
+
self.cross_attention = nn.ModuleList([MyCrossAttention(device, audio_dim, context_dim, dropout, h, dim_head) for _ in range(transformer_layer_count)])
|
67 |
+
|
68 |
+
#create a stack of linear, gelu, linear dropout layers to be used after the cross attention
|
69 |
+
self.between_attention = nn.ModuleList([nn.Sequential(
|
70 |
+
nn.Linear(inner_dim, inner_dim),
|
71 |
+
nn.GELU(),
|
72 |
+
nn.Linear(inner_dim, context_dim),
|
73 |
+
nn.Dropout(dropout)
|
74 |
+
) for _ in range(transformer_layer_count)])
|
75 |
+
|
76 |
+
self.to_out_adapter = nn.Sequential(
|
77 |
+
nn.Linear(context_dim, context_dim),
|
78 |
+
nn.Dropout(dropout)
|
79 |
+
)
|
80 |
+
|
81 |
+
|
82 |
+
def forward(self, audio_context):
|
83 |
+
audio_proj = self.audio_emb_projection(audio_context) #[bs, 64, 1024]
|
84 |
+
for cross_attention, between_attention in zip(self.cross_attention, self.between_attention):
|
85 |
+
out = cross_attention(audio_proj)
|
86 |
+
out = between_attention(out) + audio_proj
|
87 |
+
# print(f'out shape is: {out.shape}')
|
88 |
+
|
89 |
+
out = self.to_out_adapter(out) #[bs, 77, 768]
|
90 |
+
# print(f'context dim is: {out.shape}')
|
91 |
+
|
92 |
+
return out
|
93 |
+
|
94 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
accelerate==0.25.0
|
2 |
+
diffusers==0.27.2
|
3 |
+
einops==0.7.0
|
4 |
+
gradio==4.26.0
|
5 |
+
gradio_client==0.15.1
|
6 |
+
librosa==0.10.1
|
7 |
+
numpy==1.26.4
|
8 |
+
omegaconf==2.3.0
|
9 |
+
pillow==10.3.0
|
10 |
+
scikit-learn==1.4.2
|
11 |
+
scipy==1.13.0
|
12 |
+
soundfile==0.12.1
|
13 |
+
torch==2.0.1
|
14 |
+
torchaudio==2.0.2
|
15 |
+
torchlibrosa==0.1.0
|
16 |
+
torchvision==0.15.2
|
17 |
+
tqdm==4.66.2
|
18 |
+
transformers==4.35.2
|