Spaces:
Sleeping
Sleeping
from fastai.vision.all import load_learner, PILImage | |
import gradio as gr | |
from PIL import Image | |
# Define the missing function | |
def is_cat(x): | |
return x[0].isupper() | |
# Load the trained model | |
try: | |
model = load_learner('model.pkl') | |
print("β Model loaded successfully") | |
except Exception as e: | |
print(f"β Error loading model: {e}") | |
# Define a function to make predictions | |
def predict(image): | |
try: | |
print("πΈ Received image for prediction") | |
# Convert to Fastai's expected PILImage format | |
image = PILImage.create(image) | |
# Run prediction | |
pred, _, probs = model.predict(image) | |
# Convert boolean prediction to "Cat" or "Dog" | |
label = "Cat" if pred else "Dog" | |
confidence = float(probs.max()) # Convert Tensor to float | |
print(f"β Prediction successful: {label}, Confidence: {confidence:.2f}") | |
return f"Prediction: {label} (Confidence: {confidence:.2f})" | |
except Exception as e: | |
print(f"β Error during prediction: {e}") | |
return f"Error: {e}" | |
# Create the Gradio web interface | |
interface = gr.Interface( | |
fn=predict, | |
inputs=gr.Image(type="pil"), | |
outputs=gr.Textbox(), | |
title="Cat vs Dog Classifier", | |
description="Upload an image of a cat or dog and let the model classify it!" | |
) | |
# Launch the Gradio app | |
interface.launch() | |