|
import gradio as gr |
|
import subprocess |
|
|
|
from huggingface_hub import create_repo, HfApi |
|
from huggingface_hub import snapshot_download |
|
|
|
api = HfApi() |
|
|
|
def process_model(model_id, q_method, username, hf_token): |
|
|
|
MODEL_NAME = model_id.split('/')[-1] |
|
fp16 = f"{MODEL_NAME}/{MODEL_NAME.lower()}.fp16.bin" |
|
|
|
snapshot_download(repo_id=model_id, local_dir = f"{MODEL_NAME}", local_dir_use_symlinks=False) |
|
print("Model downloaded successully!") |
|
|
|
fp16_conversion = f"python llama.cpp/convert.py {MODEL_NAME} --outtype f16 --outfile {fp16}" |
|
subprocess.run(fp16_conversion, shell=True) |
|
print("Model converted to fp16 successully!") |
|
|
|
qtype = f"{MODEL_NAME}/{MODEL_NAME.lower()}.{q_method.upper()}.gguf" |
|
quantise_ggml = f"./llama.cpp/quantize {fp16} {qtype} {q_method}" |
|
subprocess.run(quantise_ggml, shell=True) |
|
print("Quantised successfully!") |
|
|
|
|
|
create_repo( |
|
repo_id = f"{username}/{MODEL_NAME}-{q_method}-GGUF", |
|
repo_type="model", |
|
exist_ok=True, |
|
token=hf_token |
|
) |
|
print("Empty repo created successfully!") |
|
|
|
|
|
api.upload_folder( |
|
folder_path=MODEL_NAME, |
|
repo_id=f"{username}/{MODEL_NAME}-{q_method}-GGUF", |
|
allow_patterns=["*.gguf","$.md"], |
|
token=hf_token |
|
) |
|
print("Uploaded successfully!") |
|
|
|
return "Processing complete." |
|
|
|
|
|
iface = gr.Interface( |
|
fn=process_model, |
|
inputs=[ |
|
gr.Textbox(lines=1, label="Model ID"), |
|
gr.Textbox(lines=1, label="Quantization Methods"), |
|
gr.Textbox(lines=1, label="Username"), |
|
gr.Textbox(lines=1, label="Token") |
|
], |
|
outputs="text" |
|
) |
|
|
|
|
|
iface.launch(debug=True) |