|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import annotations |
|
|
|
import importlib |
|
import math |
|
import warnings |
|
from typing import Any, Optional, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.init as init |
|
|
|
from peft.tuners.tuners_utils import BaseTunerLayer, check_adapters_to_merge |
|
from peft.utils import transpose |
|
from peft.utils.integrations import gather_params_ctx |
|
|
|
from .layer import LoraLayer |
|
|
|
|
|
class LoraParallelLinear(nn.Module, LoraLayer): |
|
""" |
|
When the target layer parallel_linear is RowParallelLinear, in order to keep the input and output shapes |
|
consistent, we need to split the lora matrix A into rows, and the lora_B at this time should be a complete linear |
|
layer; In the same way, when the target layer is ColumnParallelLinear, we perform column segmentation on lora_B, |
|
while lora_A is still a complete linear layer. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
base_layer, |
|
adapter_name: str, |
|
backend, |
|
r: int = 0, |
|
lora_alpha: int = 1, |
|
lora_dropout: float = 0.0, |
|
fan_in_fan_out: bool = False, |
|
is_target_conv_1d_layer: bool = False, |
|
init_lora_weights: Union[bool, str] = True, |
|
use_rslora: bool = False, |
|
use_dora: bool = False, |
|
lora_bias: bool = False, |
|
**kwargs, |
|
): |
|
if lora_bias: |
|
raise ValueError(f"{self.__class__.__name__} does not support lora_bias yet, set it to False") |
|
|
|
super().__init__() |
|
LoraLayer.__init__(self, base_layer=base_layer, **kwargs) |
|
|
|
if use_dora: |
|
raise ValueError(f"{self.__class__.__name__} does not support DoRA yet, please set it to False") |
|
|
|
self.backend = backend |
|
self.is_parallel_a = isinstance(base_layer, backend.RowParallelLinear) |
|
self.fan_in_fan_out = fan_in_fan_out |
|
self._active_adapter = adapter_name |
|
|
|
megatron_config = kwargs["megatron_config"] |
|
parallel_linear_kwargs = {"megatron_config": megatron_config} |
|
init_method = init.xavier_normal_ |
|
if hasattr(megatron_config, "init_method"): |
|
init_method = megatron_config.init_method |
|
input_is_parallel = True |
|
gather_output = False |
|
if isinstance(base_layer, self.backend.RowParallelLinear): |
|
input_is_parallel = base_layer.input_is_parallel |
|
else: |
|
gather_output = base_layer.gather_output |
|
self.update_layer( |
|
adapter_name, |
|
r, |
|
lora_alpha=lora_alpha, |
|
lora_dropout=lora_dropout, |
|
init_lora_weights=init_lora_weights, |
|
use_rslora=use_rslora, |
|
use_dora=use_dora, |
|
init_method=init_method, |
|
input_is_parallel=input_is_parallel, |
|
gather_output=gather_output, |
|
**parallel_linear_kwargs, |
|
) |
|
|
|
if is_target_conv_1d_layer: |
|
raise ValueError( |
|
f"{self.__class__.__name__} does not support target_conv_1d_layer yet, please set it to False" |
|
) |
|
self.is_target_conv_1d_layer = False |
|
|
|
def update_layer( |
|
self, |
|
adapter_name, |
|
r, |
|
lora_alpha, |
|
lora_dropout, |
|
init_lora_weights, |
|
use_rslora, |
|
use_dora=False, |
|
init_method=init.xavier_normal_, |
|
input_is_parallel=True, |
|
gather_output=False, |
|
**parallel_linear_kwargs, |
|
): |
|
if r <= 0: |
|
raise ValueError(f"`r` should be a positive integer value but the value passed is {r}") |
|
self.r[adapter_name] = r |
|
self.lora_alpha[adapter_name] = lora_alpha |
|
if lora_dropout > 0.0: |
|
lora_dropout_layer = nn.Dropout(p=lora_dropout) |
|
else: |
|
lora_dropout_layer = nn.Identity() |
|
|
|
self.lora_dropout[adapter_name] = lora_dropout_layer |
|
|
|
megatron_config = parallel_linear_kwargs["megatron_config"] |
|
|
|
megatron_config.params_dtype = torch.float32 |
|
if self.is_parallel_a: |
|
lora_a = self.backend.RowParallelLinear( |
|
input_size=self.in_features, |
|
output_size=r, |
|
bias=False, |
|
input_is_parallel=input_is_parallel, |
|
skip_bias_add=True, |
|
init_method=init_method, |
|
config=megatron_config, |
|
) |
|
lora_b = nn.Linear(in_features=r, out_features=self.out_features, bias=False, dtype=torch.float32) |
|
else: |
|
lora_a = nn.Linear(in_features=self.in_features, out_features=r, bias=False, dtype=torch.float32) |
|
lora_b = self.backend.ColumnParallelLinear( |
|
input_size=r, |
|
output_size=self.out_features, |
|
bias=False, |
|
gather_output=gather_output, |
|
init_method=init_method, |
|
config=megatron_config, |
|
) |
|
self.lora_A[adapter_name] = lora_a |
|
self.lora_B[adapter_name] = lora_b |
|
if use_rslora: |
|
self.scaling[adapter_name] = lora_alpha / math.sqrt(r) |
|
else: |
|
self.scaling[adapter_name] = lora_alpha / r |
|
|
|
|
|
if isinstance(init_lora_weights, str) and init_lora_weights.startswith("pissa"): |
|
with gather_params_ctx(self.get_base_layer().weight): |
|
self.pissa_init(adapter_name, init_lora_weights) |
|
elif isinstance(init_lora_weights, str) and init_lora_weights.lower() == "olora": |
|
with gather_params_ctx(self.get_base_layer().weight): |
|
self.olora_init(adapter_name) |
|
elif init_lora_weights == "loftq": |
|
with gather_params_ctx(self.get_base_layer().weight): |
|
self.loftq_init(adapter_name) |
|
elif init_lora_weights: |
|
self.reset_lora_parameters(adapter_name, init_lora_weights) |
|
|
|
|
|
self._move_adapter_to_device_of_base_layer(adapter_name) |
|
|
|
if use_dora: |
|
self.dora_init(adapter_name) |
|
self.use_dora[adapter_name] = True |
|
else: |
|
self.use_dora[adapter_name] = False |
|
|
|
self.set_adapter(self.active_adapters) |
|
|
|
def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any): |
|
self._check_forward_args(x, *args, **kwargs) |
|
adapter_names = kwargs.pop("adapter_names", None) |
|
|
|
|
|
|
|
if self.disable_adapters: |
|
if self.merged: |
|
self.unmerge() |
|
result, bias = self.base_layer(x, *args, **kwargs) |
|
elif adapter_names is not None: |
|
raise ValueError(f"{self.__class__.__name__} does not support mixed_batch_forward yet.") |
|
elif self.merged: |
|
result, bias = self.base_layer(x, *args, **kwargs) |
|
else: |
|
result, bias = self.base_layer(x, *args, **kwargs) |
|
torch_result_dtype = result.dtype |
|
for active_adapter in self.active_adapters: |
|
if active_adapter not in self.lora_A.keys(): |
|
continue |
|
lora_A = self.lora_A[active_adapter] |
|
lora_B = self.lora_B[active_adapter] |
|
dropout = self.lora_dropout[active_adapter] |
|
scaling = self.scaling[active_adapter] |
|
x = x.to(lora_A.weight.dtype) |
|
|
|
if not self.use_dora[active_adapter]: |
|
result = result + lora_B(lora_A(dropout(x))) * scaling |
|
else: |
|
if isinstance(dropout, torch.nn.Identity) or not self.training: |
|
base_result = result |
|
else: |
|
x = dropout(x) |
|
base_result = None |
|
|
|
result = result + self.lora_magnitude_vector[active_adapter]( |
|
x, |
|
lora_A=lora_A, |
|
lora_B=lora_B, |
|
scaling=scaling, |
|
base_layer=self.get_base_layer(), |
|
base_result=base_result, |
|
) |
|
|
|
result = result.to(torch_result_dtype) |
|
return result, bias |
|
|
|
def merge(self, safe_merge: bool = False, adapter_names: Optional[list[str]] = None) -> None: |
|
""" |
|
Merge the active adapter weights into the base weights |
|
|
|
Args: |
|
safe_merge (`bool`, *optional*): |
|
If True, the merge operation will be performed in a copy of the original weights and check for NaNs |
|
before merging the weights. This is useful if you want to check if the merge operation will produce |
|
NaNs. Defaults to `False`. |
|
adapter_names (`list[str]`, *optional*): |
|
The list of adapter names that should be merged. If None, all active adapters will be merged. Defaults |
|
to `None`. |
|
""" |
|
adapter_names = check_adapters_to_merge(self, adapter_names) |
|
if not adapter_names: |
|
|
|
return |
|
|
|
for active_adapter in adapter_names: |
|
if active_adapter in self.lora_A.keys(): |
|
base_layer = self.get_base_layer() |
|
if safe_merge: |
|
|
|
|
|
orig_weights = base_layer.weight.data.clone() |
|
delta_weight = self.get_delta_weight(active_adapter) |
|
if not self.use_dora[active_adapter]: |
|
orig_weights = orig_weights + delta_weight |
|
else: |
|
|
|
|
|
weight_norm = ( |
|
self.lora_magnitude_vector[active_adapter] |
|
.get_weight_norm(orig_weights, transpose(delta_weight, self.fan_in_fan_out), scaling=1) |
|
.detach() |
|
) |
|
|
|
|
|
|
|
self._cache_store(f"{active_adapter}-weight_norm", weight_norm) |
|
dora_factor = self.lora_magnitude_vector[active_adapter].weight / weight_norm |
|
dora_factor = transpose(dora_factor.view(-1, 1), self.fan_in_fan_out) |
|
orig_weights = dora_factor * (orig_weights + delta_weight) |
|
|
|
if not torch.isfinite(orig_weights).all(): |
|
raise ValueError( |
|
f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken" |
|
) |
|
|
|
base_layer.weight.data = orig_weights |
|
else: |
|
delta_weight = self.get_delta_weight(active_adapter) |
|
if not self.use_dora[active_adapter]: |
|
base_layer.weight.data = base_layer.weight.data + delta_weight |
|
else: |
|
|
|
|
|
weight_norm = ( |
|
self.lora_magnitude_vector[active_adapter] |
|
.get_weight_norm( |
|
base_layer.weight, transpose(delta_weight, self.fan_in_fan_out), scaling=1 |
|
) |
|
.detach() |
|
) |
|
|
|
|
|
|
|
self._cache_store(f"{active_adapter}-weight_norm", weight_norm) |
|
dora_factor = self.lora_magnitude_vector[active_adapter].weight / weight_norm |
|
dora_factor = transpose(dora_factor.view(-1, 1), self.fan_in_fan_out) |
|
new_weight = dora_factor * (base_layer.weight.data + delta_weight) |
|
base_layer.weight.data = new_weight |
|
|
|
self.merged_adapters.append(active_adapter) |
|
|
|
def unmerge(self) -> None: |
|
""" |
|
This method unmerges all merged adapter layers from the base weights. |
|
""" |
|
if not self.merged: |
|
warnings.warn("Already unmerged. Nothing to do.") |
|
return |
|
while len(self.merged_adapters) > 0: |
|
active_adapter = self.merged_adapters.pop() |
|
if active_adapter in self.lora_A.keys(): |
|
weight = self.get_base_layer().weight |
|
delta_weight = self.get_delta_weight(active_adapter) |
|
if not self.use_dora[active_adapter]: |
|
weight.data -= delta_weight |
|
else: |
|
weight_norm = self._cache_pop(f"{active_adapter}-weight_norm") |
|
dora_factor = self.lora_magnitude_vector[active_adapter].weight / weight_norm |
|
weight_orig = weight.data / dora_factor.view(-1, 1) - delta_weight |
|
weight.data = weight_orig |
|
|
|
def get_delta_weight(self, adapter) -> torch.Tensor: |
|
""" |
|
Compute the delta weight for the given adapter. |
|
|
|
Args: |
|
adapter (str): |
|
The name of the adapter for which the delta weight should be computed. |
|
""" |
|
device = self.lora_B[adapter].weight.device |
|
dtype = self.lora_B[adapter].weight.dtype |
|
|
|
|
|
|
|
|
|
cast_to_fp32 = device.type == "cpu" and (dtype == torch.float16 or dtype == torch.bfloat16) |
|
|
|
weight_A = self.lora_A[adapter].weight |
|
weight_B = self.lora_B[adapter].weight |
|
|
|
if cast_to_fp32: |
|
weight_A = weight_A.float() |
|
weight_B = weight_B.float() |
|
|
|
output_tensor = transpose(weight_B @ weight_A, self.fan_in_fan_out) * self.scaling[adapter] |
|
|
|
if cast_to_fp32: |
|
output_tensor = output_tensor.to(dtype=dtype) |
|
|
|
|
|
self.lora_A[adapter].weight.data = weight_A.to(dtype) |
|
self.lora_B[adapter].weight.data = weight_B.to(dtype) |
|
|
|
return output_tensor |
|
|
|
def __repr__(self) -> str: |
|
rep = super().__repr__() |
|
return "lora." + rep |
|
|
|
|
|
def dispatch_megatron( |
|
target: torch.nn.Module, |
|
adapter_name: str, |
|
lora_config, |
|
**kwargs: Any, |
|
) -> Optional[torch.nn.Module]: |
|
new_module = None |
|
|
|
if isinstance(target, BaseTunerLayer): |
|
target_base_layer = target.get_base_layer() |
|
else: |
|
target_base_layer = target |
|
|
|
if lora_config.megatron_config: |
|
megatron_core = importlib.import_module(lora_config.megatron_core) |
|
else: |
|
megatron_core = None |
|
|
|
if megatron_core and isinstance( |
|
target_base_layer, |
|
(megatron_core.tensor_parallel.ColumnParallelLinear, megatron_core.tensor_parallel.RowParallelLinear), |
|
): |
|
megatron_kwargs = kwargs.copy() |
|
megatron_config = lora_config.megatron_config |
|
if isinstance(megatron_config, dict): |
|
transformer_config_class = megatron_core.transformer.transformer_config.TransformerConfig |
|
megatron_config = transformer_config_class(**lora_config.megatron_config) |
|
megatron_kwargs["megatron_config"] = megatron_config |
|
if megatron_kwargs["fan_in_fan_out"]: |
|
warnings.warn( |
|
"fan_in_fan_out is set to True but the target module is `ColumnParallelLinear` " |
|
"or `RowParallelLinear`. " |
|
"Setting fan_in_fan_out to False." |
|
) |
|
megatron_kwargs["fan_in_fan_out"] = lora_config.fan_in_fan_out = False |
|
new_module = LoraParallelLinear( |
|
base_layer=target, adapter_name=adapter_name, backend=megatron_core.tensor_parallel, **megatron_kwargs |
|
) |
|
|
|
return new_module |
|
|