Spaces:
Runtime error
Runtime error
import gradio as gr | |
import tensorflow as tf | |
import numpy as np | |
# model = tf.saved_model.load("/home/user/app/model") | |
model = tf.saved_model.load("C:\\Users\\caleb\\OneDrive\\Documents\\Coding Projects\\INFX_639\\mnist_checker\\model") | |
labels = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"] | |
def mnist_classifier(img): | |
img_tensor = tf.convert_to_tensor(img['composite'], dtype=tf.float32) | |
img_tensor = tf.expand_dims(img_tensor[:, :, -1], axis=-1) # Select the last channel | |
img_tensor = tf.image.resize(img_tensor, [28, 28]) | |
# Normalize and flatten | |
img_tensor /= 255.0 | |
img_tensor = tf.reshape(img_tensor, (1, 784)) | |
prediction = model.signatures['serving_default'](img_tensor) | |
prediction = tf.argmax(prediction['output'], axis=1).numpy() | |
return str(prediction[0]) | |
demo = gr.Interface(fn=mnist_classifier, inputs="sketchpad", outputs="text", title="MNIST Checker", description="Draw a number 0-9 to see if the model can classify it.") | |
demo.launch() |