Spaces:
Sleeping
Sleeping
import base64 | |
from csv import DictWriter | |
import os.path as os_path | |
from plotly.graph_objects import Figure | |
import gradio as gr | |
from pandas import read_csv, DataFrame | |
import emission_calculator.calculator as ec | |
DATA_PATH = "./reports/historic_data.csv" | |
def compute_history() -> Figure: | |
if not os_path.exists(DATA_PATH): | |
f = open(DATA_PATH, "xt") | |
f.write("Name,Energy Usage,Waste Generated,Business Travel") | |
f.close() | |
df = DataFrame.from_dict({}) | |
else: | |
df = read_csv(DATA_PATH) | |
return ec.draw_historic_figure(df) | |
def validate_input( | |
company_name: str, | |
avg_electric_bill: float, | |
avg_gas_bill: float, | |
avg_transport_cost: float, | |
monthly_waste_generated: float, | |
recycled_waste_percent: float, | |
annual_travel_kms: float, | |
fuel_efficiency: float, | |
) -> None: | |
""" | |
Comprehensive validation for input parameters with non-zero requirements | |
""" | |
# Company Name Validation | |
if not company_name or company_name.isspace(): | |
raise gr.Error("Company name cannot be empty or just whitespace!") | |
if len(company_name) > 100: | |
raise gr.Error("Company name is too long (maximum 100 characters)!") | |
# Non-Zero Input Validation | |
non_zero_fields = [ | |
("Electricity Bill", avg_electric_bill), | |
("Gas Bill", avg_gas_bill), | |
("Transport Cost", avg_transport_cost), | |
("Monthly Waste", monthly_waste_generated), | |
("Annual Travel Distance", annual_travel_kms), | |
("Fuel Efficiency", fuel_efficiency), | |
] | |
for name, value in non_zero_fields: | |
try: | |
float_val = float(value) | |
except (TypeError, ValueError): | |
raise gr.Error(f"{name} must be a valid number!") | |
if float_val <= 0: | |
raise gr.Error(f"{name} must be a positive number greater than zero!") | |
# Additional realistic range checks | |
if name == "Electricity Bill" and float_val > 10000: | |
raise gr.Error( | |
"Electricity bill seems unrealistically high. Please check the amount!" | |
) | |
if name == "Monthly Waste" and float_val > 1000: | |
raise gr.Error( | |
"Monthly waste generation seems extremely high. Please verify!" | |
) | |
if name == "Fuel Efficiency" : | |
if float_val < 5: | |
raise gr.Error( | |
"Fuel efficiency seems unrealistically low. Please verify!" | |
) | |
if float_val > 15: | |
raise gr.Error( | |
"Fuel efficiency is very high. Please verify!" | |
) | |
# Percentage-specific validation | |
try: | |
recycled_percent = float(recycled_waste_percent) | |
except (TypeError, ValueError): | |
raise gr.Error("Recycled waste percentage must be a valid number!") | |
if recycled_percent < 0 or recycled_percent > 100: | |
raise gr.Error("Recycled waste percentage must be between 1 and 100!") | |
def compute( | |
company_name: str, | |
avg_electric_bill: float, | |
avg_gas_bill: float, | |
avg_transport_cost: float, | |
monthly_waste_generated: float, | |
recycled_waste_percent: float, | |
annual_travel_kms: float, | |
fuel_efficiency: float, | |
) -> tuple[str, gr.Button]: | |
""" | |
Compute carbon footprint with comprehensive input validation | |
Returns: | |
result (tuple) | |
of summary HTML (str) | |
and download_report button (Button) | |
""" | |
# Validate inputs first | |
validate_input( | |
company_name, | |
avg_electric_bill, | |
avg_gas_bill, | |
avg_transport_cost, | |
monthly_waste_generated, | |
recycled_waste_percent, | |
annual_travel_kms, | |
fuel_efficiency, | |
) | |
# Proceed with calculation if validation passes | |
df = ec.make_dataframe( | |
company_name=company_name, | |
avg_electric_bill=avg_electric_bill, | |
avg_gas_bill=avg_gas_bill, | |
avg_transport_bill=avg_transport_cost, | |
monthly_waste_generated=monthly_waste_generated, | |
recycled_waste_percent=recycled_waste_percent, | |
annual_travel_kms=annual_travel_kms, | |
fuel_efficiency=fuel_efficiency, | |
) | |
try: | |
df_dump = ec.dataframe_to_dict(df=df) | |
with open(DATA_PATH, mode="a") as f: | |
w = DictWriter(f, fieldnames=df_dump.keys()) | |
if not os_path.exists(DATA_PATH): | |
w.writeheader() | |
w.writerow(df_dump) | |
print("Saving is successful") | |
except Exception as e: | |
print(e) | |
plot = ec.draw_report_figure(df) | |
# Convert plot to base64 image | |
img_data = base64.b64encode( | |
plot.to_image(width=1400, height=800, format="png") | |
).decode("utf-8") | |
# convert plot to pdf for downloading report | |
file_path = f"./reports/{company_name.lower().replace(' ', '_')[:10]}_report.pdf" | |
plot.write_image(file_path, width=1400, height=800) | |
# Generate a summary HTML with embedded image | |
summary = f""" | |
<div style="max-width: 1400px; margin: 0 auto; font-family: Arial, sans-serif;"> | |
<h3 style="color: #ffffff;"> Carbon Footprint Summary for {company_name} </h3> | |
<ul style="color: #666;"> | |
<li>π <strong>Total Carbon Impact</strong>: Calculated based on your inputs</li> | |
<li>π‘ <strong>Energy Consumption</strong>: β¬{avg_electric_bill + avg_gas_bill:.2f}</li> | |
<li>π <strong>Transportation Emissions</strong>: {annual_travel_kms} km</li> | |
<li>ποΈ <strong>Waste Management</strong>: {monthly_waste_generated} kg (Recycled: {recycled_waste_percent}%)</li> | |
</ul> | |
<img src="data:image/png;base64,{img_data}" style="max-width: 100%; height: auto;" alt="Carbon Footprint Report"/> | |
</div> | |
""" | |
download_button = gr.DownloadButton( | |
"Download Report", variant="secondary", visible=True, value=file_path | |
) | |
return summary, download_button | |
def create_carbon_footprint_app() -> gr.Blocks: | |
with gr.Blocks(theme="soft") as demo: | |
with gr.Tab("Calculator π±"): | |
gr.Markdown("# π Carbon Footprint Calculator") | |
# Hidden image download button | |
download_button = gr.File( | |
label="Download Carbon Footprint Report", type="binary", visible=False | |
) | |
with gr.Column(): | |
with gr.Column(scale=2): | |
with gr.Column(variant="compact"): | |
company_name = gr.Textbox( | |
label="Company Name", | |
placeholder="Enter your company name", | |
info="Required: Full legal company name", | |
) | |
with gr.Row(): | |
with gr.Column(variant="panel"): | |
avg_electric_bill = gr.Number( | |
value=1.0, | |
label="Average Electricity Bill (β¬)", | |
minimum=0.01, | |
info="Monthly electricity expenses", | |
) | |
avg_gas_bill = gr.Number( | |
value=1.0, | |
label="Average Gas Bill (β¬)", | |
minimum=0.01, | |
info="Monthly natural gas expenses", | |
) | |
avg_transport_cost = gr.Number( | |
value=1.0, | |
label="Average Transport Cost (β¬)", | |
info="Monthly Fuel bill for transport", | |
) | |
with gr.Row(variant="panel"): | |
with gr.Column(variant="compact"): | |
annual_travel_kms = gr.Number( | |
value=1.0, | |
label="Annual Business Travel (km)", | |
minimum=0.01, | |
info="Total kilometers traveled by employees", | |
) | |
fuel_efficiency = gr.Number( | |
value=1.0, | |
label="Vehicle Fuel Efficiency (L/100 km)", | |
minimum=0.01, | |
info="Average fleet fuel consumption", | |
) | |
with gr.Column(variant="compact"): | |
monthly_waste_generated = gr.Number( | |
value=1.0, | |
label="Monthly Waste Generated (kg)", | |
minimum=0.01, | |
info="Total waste produced monthly", | |
) | |
recycled_waste_percent = gr.Number( | |
value=0.0, | |
label="Recycled Waste (%)", | |
minimum=0.0, | |
maximum=100.0, | |
info="Percentage of waste recycled", | |
) | |
with gr.Column(scale=2): | |
output_plot = gr.HTML(label="Carbon Footprint Report") | |
# Create a row for buttons | |
with gr.Row(): | |
submit_button = gr.Button("Generate Report", variant="primary") | |
download_button = gr.DownloadButton( | |
"Download Report", variant="secondary", visible=False | |
) | |
submit_button.click( | |
fn=compute, | |
inputs=[ | |
company_name, | |
avg_electric_bill, | |
avg_gas_bill, | |
avg_transport_cost, | |
monthly_waste_generated, | |
recycled_waste_percent, | |
annual_travel_kms, | |
fuel_efficiency, | |
], | |
outputs=[output_plot, download_button], | |
) | |
with gr.Tab("History π") as historic_tab: | |
gr.Markdown("# Historic Company Data") | |
plot = gr.Plot(value=compute_history(), label="Historic Data") | |
refresh = gr.Button("Refresh", variant="secondary") | |
refresh.click( | |
fn=compute_history, | |
outputs=[plot], | |
) | |
# auto-reload | |
historic_tab.select( | |
fn=compute_history, | |
outputs=[plot], | |
) | |
return demo | |
if __name__ == "__main__": | |
create_carbon_footprint_app().launch() | |