cloudseg / README.md
caixiaoshun's picture
使用huggingface hub尝试更新
fa7be76 verified

A newer version of the Gradio SDK is available: 5.23.3

Upgrade
metadata
title: Cloudseg
emoji: πŸ“š
colorFrom: blue
colorTo: red
sdk: gradio
sdk_version: 4.40.0
app_file: app.py
pinned: false
license: apache-2.0

Cloud Segmentation

demo python pytorch lightning hydra license contributors Template Paper Conference

Datasets

cloudseg
β”œβ”€β”€ src
β”œβ”€β”€ configs
β”œβ”€β”€ data
β”‚   β”œβ”€β”€ hrcwhu
β”‚   β”‚   β”œβ”€β”€ train.txt
β”‚   β”‚   β”œβ”€β”€ test.txt
β”‚   β”‚   β”œβ”€β”€ img_dir
β”‚   β”‚   β”‚   β”œβ”€β”€ train
β”‚   β”‚   β”‚   β”œβ”€β”€ test
β”‚   β”‚   β”œβ”€β”€ ann_dir
β”‚   β”‚   β”‚   β”œβ”€β”€ train
β”‚   β”‚   β”‚   β”œβ”€β”€ test

Supported Methods

Installation

git clone https://github.com/XavierJiezou/cloudseg.git
cd cloudseg
conda env create -f environment.yaml
conda activate cloudseg

Usage

Train model with default configuration

# train on CPU
python src/train.py trainer=cpu

# train on GPU
python src/train.py trainer=gpu

Train model with chosen experiment configuration from configs/experiment/

python src/train.py experiment=experiment_name.yaml

Tranin Example

python src/train.py experiment=hrcwhu_cdnetv1.yaml

You can override any parameter from command line like this

python src/train.py trainer.max_epochs=20 data.batch_size=64

Visualization in wandb

python wand_vis.py --model-name model_name

Example

python wand_vis.py --model-name cdnetv1