Spaces:
Sleeping
Sleeping
A newer version of the Gradio SDK is available:
5.23.3
metadata
title: Cloudseg
emoji: π
colorFrom: blue
colorTo: red
sdk: gradio
sdk_version: 4.40.0
app_file: app.py
pinned: false
license: apache-2.0
Cloud Segmentation
Datasets
cloudseg
βββ src
βββ configs
βββ data
β βββ hrcwhu
β β βββ train.txt
β β βββ test.txt
β β βββ img_dir
β β β βββ train
β β β βββ test
β β βββ ann_dir
β β β βββ train
β β β βββ test
Supported Methods
- UNet (MICCAI 2016)
- CDNetv1 (TGRS 2019)
- CDNetv2 (TGRS 2021)
- DBNet (TGRS 2022)
- HrCloudNet (JEI 2024)
- McdNet (International Journal of Applied Earth Observation and Geoinformation 2024)
- Scnn (ISPRS 2024)
Installation
git clone https://github.com/XavierJiezou/cloudseg.git
cd cloudseg
conda env create -f environment.yaml
conda activate cloudseg
Usage
Train model with default configuration
# train on CPU
python src/train.py trainer=cpu
# train on GPU
python src/train.py trainer=gpu
Train model with chosen experiment configuration from configs/experiment/
python src/train.py experiment=experiment_name.yaml
Tranin Example
python src/train.py experiment=hrcwhu_cdnetv1.yaml
You can override any parameter from command line like this
python src/train.py trainer.max_epochs=20 data.batch_size=64
Visualization in wandb
python wand_vis.py --model-name model_name
Example
python wand_vis.py --model-name cdnetv1