caixiaoshun's picture
使用huggingface hub尝试更新
fa7be76 verified
import json
import os
import random
import albumentations
import matplotlib.pyplot as plt
import numpy as np
import torch
from PIL import Image
from torch.utils.data import Dataset
class DalleTransformerPreprocessor(object):
def __init__(self,
size=256,
phase='train',
additional_targets=None):
self.size = size
self.phase = phase
# ddc: following dalle to use randomcrop
self.train_preprocessor = albumentations.Compose([albumentations.RandomCrop(height=size, width=size)],
additional_targets=additional_targets)
self.val_preprocessor = albumentations.Compose([albumentations.CenterCrop(height=size, width=size)],
additional_targets=additional_targets)
def __call__(self, image, **kargs):
"""
image: PIL.Image
"""
if isinstance(image, np.ndarray):
image = Image.fromarray(image.astype(np.uint8))
w, h = image.size
s_min = min(h, w)
if self.phase == 'train':
off_h = int(random.uniform(3*(h-s_min)//8, max(3*(h-s_min)//8+1, 5*(h-s_min)//8)))
off_w = int(random.uniform(3*(w-s_min)//8, max(3*(w-s_min)//8+1, 5*(w-s_min)//8)))
image = image.crop((off_w, off_h, off_w + s_min, off_h + s_min))
# resize image
t_max = min(s_min, round(9/8*self.size))
t_max = max(t_max, self.size)
t = int(random.uniform(self.size, t_max+1))
image = image.resize((t, t))
image = np.array(image).astype(np.uint8)
image = self.train_preprocessor(image=image)
else:
if w < h:
w_ = self.size
h_ = int(h * w_/w)
else:
h_ = self.size
w_ = int(w * h_/h)
image = image.resize((w_, h_))
image = np.array(image).astype(np.uint8)
image = self.val_preprocessor(image=image)
return image
class CelebA(Dataset):
"""
This Dataset can be used for:
- image-only: setting 'conditions' = []
- image and multi-modal 'conditions': setting conditions as the list of modalities you need
To toggle between 256 and 512 image resolution, simply change the 'image_folder'
"""
def __init__(
self,
phase='train',
size=512,
test_dataset_size=3000,
conditions=['seg_mask', 'text', 'sketch'],
image_folder='data/celeba/image/image_512_downsampled_from_hq_1024',
text_file='data/celeba/text/captions_hq_beard_and_age_2022-08-19.json',
mask_folder='data/celeba/mask/CelebAMask-HQ-mask-color-palette_32_nearest_downsampled_from_hq_512_one_hot_2d_tensor',
sketch_folder='data/celeba/sketch/sketch_1x1024_tensor',
):
self.transform = DalleTransformerPreprocessor(size=size, phase=phase)
self.conditions = conditions
self.image_folder = image_folder
# conditions directory
self.text_file = text_file
with open(self.text_file, 'r') as f:
self.text_file_content = json.load(f)
if 'seg_mask' in self.conditions:
self.mask_folder = mask_folder
if 'sketch' in self.conditions:
self.sketch_folder = sketch_folder
# list of valid image names & train test split
self.image_name_list = list(self.text_file_content.keys())
# train test split
if phase == 'train':
self.image_name_list = self.image_name_list[:-test_dataset_size]
elif phase == 'test':
self.image_name_list = self.image_name_list[-test_dataset_size:]
else:
raise NotImplementedError
self.num = len(self.image_name_list)
def __len__(self):
return self.num
def __getitem__(self, index):
# ---------- (1) get image ----------
image_name = self.image_name_list[index]
image_path = os.path.join(self.image_folder, image_name)
image = Image.open(image_path).convert('RGB')
image = np.array(image).astype(np.uint8)
image = self.transform(image=image)['image']
image = image.astype(np.float32)/127.5 - 1.0
# record into data entry
if len(self.conditions) == 1:
data = {
'image': image,
}
else:
data = {
'image': image,
'conditions': {}
}
# ---------- (2) get text ----------
if 'text' in self.conditions:
text = self.text_file_content[image_name]["Beard_and_Age"].lower()
# record into data entry
if len(self.conditions) == 1:
data['caption'] = text
else:
data['conditions']['text'] = text
# ---------- (3) get mask ----------
if 'seg_mask' in self.conditions:
mask_idx = image_name.split('.')[0]
mask_name = f'{mask_idx}.pt'
mask_path = os.path.join(self.mask_folder, mask_name)
mask_one_hot_tensor = torch.load(mask_path)
# record into data entry
if len(self.conditions) == 1:
data['seg_mask'] = mask_one_hot_tensor
else:
data['conditions']['seg_mask'] = mask_one_hot_tensor
# ---------- (4) get sketch ----------
if 'sketch' in self.conditions:
sketch_idx = image_name.split('.')[0]
sketch_name = f'{sketch_idx}.pt'
sketch_path = os.path.join(self.sketch_folder, sketch_name)
sketch_one_hot_tensor = torch.load(sketch_path)
# record into data entry
if len(self.conditions) == 1:
data['sketch'] = sketch_one_hot_tensor
else:
data['conditions']['sketch'] = sketch_one_hot_tensor
data["image_name"] = image_name.split('.')[0]
return data
if __name__ == '__main__':
# The caption file only has 29999 captions: https://github.com/ziqihuangg/CelebA-Dialog/issues/1
# Testing for `phase`
train_dataset = CelebA(phase="train")
test_dataset = CelebA(phase="test")
assert len(train_dataset)==26999
assert len(test_dataset)==3000
# Testing for `size`
size_512 = CelebA(size=512)
assert size_512[0]['image'].shape == (512, 512, 3)
assert size_512[0]["conditions"]['seg_mask'].shape == (19, 1024)
assert size_512[0]["conditions"]['sketch'].shape == (1, 1024)
size_512 = CelebA(size=256)
assert size_512[0]['image'].shape == (256, 256, 3)
assert size_512[0]["conditions"]['seg_mask'].shape == (19, 1024)
assert size_512[0]["conditions"]['sketch'].shape == (1, 1024)
# Testing for `conditions`
dataset = CelebA(conditions = ['seg_mask', 'text', 'sketch'])
image = dataset[0]["image"]
seg_mask= dataset[0]["conditions"]['seg_mask']
sketch = dataset[0]["conditions"]['sketch']
text = dataset[0]["conditions"]['text']
# show image, seg_mask, sketch in 3x3 grid, and text in title
fig, ax = plt.subplots(1, 3, figsize=(12, 4))
# Show image
ax[0].imshow((image + 1) / 2)
ax[0].set_title('Image')
ax[0].axis('off')
# # Show segmentation mask
seg_mask = torch.argmax(seg_mask, dim=0).reshape(32, 32).numpy().astype(np.uint8)
# resize to 512x512 using nearest neighbor interpolation
seg_mask = Image.fromarray(seg_mask).resize((512, 512), Image.NEAREST)
seg_mask = np.array(seg_mask)
ax[1].imshow(seg_mask, cmap='tab20')
ax[1].set_title('Segmentation Mask')
ax[1].axis('off')
# # # Show sketch
sketch = sketch.reshape(32, 32).numpy().astype(np.uint8)
# resize to 512x512 using nearest neighbor interpolation
sketch = Image.fromarray(sketch).resize((512, 512), Image.NEAREST)
sketch = np.array(sketch)
ax[2].imshow(sketch, cmap='gray')
ax[2].set_title('Sketch')
ax[2].axis('off')
# Add title with text
fig.suptitle(text, fontsize=16)
plt.tight_layout()
plt.savefig('celeba_sample.png')
# save seg_mask with name such as "27000.png, 270001.png, ..., 279999.png" of test dataset to "/mnt/chongqinggeminiceph1fs/geminicephfs/wx-mm-spr-xxxx/zouxuechao/Collaborative-Diffusion/evaluation/CollDiff/real_mask"
from tqdm import tqdm
for data in tqdm(test_dataset):
mask = torch.argmax(data["conditions"]['seg_mask'], dim=0).reshape(32, 32).numpy().astype(np.uint8)
mask = Image.fromarray(mask).resize((512, 512), Image.NEAREST)
mask.save(f"/mnt/chongqinggeminiceph1fs/geminicephfs/wx-mm-spr-xxxx/zouxuechao/Collaborative-Diffusion/evaluation/CollDiff/real_mask/{data['image_name']}.png")