cloudseg / wandb_vis.py
caixiaoshun's picture
更新了kappamask模型
3692a8e verified
# -*- coding: utf-8 -*-
# @Time : 2024/8/3 上午10:46
# @Author : xiaoshun
# @Email : [email protected]
# @File : wandb_vis.py
# @Software: PyCharm
import argparse
import os
import shutil
from glob import glob
import albumentations as albu
import numpy as np
import torch
import wandb
from PIL import Image
from albumentations.pytorch.transforms import ToTensorV2
from matplotlib import pyplot as plt
from rich.progress import track
from thop import profile
from src.data.components.hrcwhu import HRCWHU
from src.data.hrcwhu_datamodule import HRCWHUDataModule
from src.models.components.cdnetv1 import CDnetV1
from src.models.components.cdnetv2 import CDnetV2
from src.models.components.dbnet import DBNet
from src.models.components.hrcloudnet import HRCloudNet
from src.models.components.kappamask import KappaMask
from src.models.components.mcdnet import MCDNet
from src.models.components.scnn import SCNN
from src.models.components.unetmobv2 import UNetMobV2
class WandbVis:
def __init__(self, model_name):
self.model_name = model_name
self.device = "cuda:1" if torch.cuda.is_available() else "cpu"
# self.device = "cpu"
self.colors = ((255, 255, 255), (128, 192, 128))
self.num_classes = 2
self.model = self.load_model()
self.dataloader = self.load_dataset()
self.macs, self.params = None, None
wandb.init(project='model_vis', name=self.model_name)
def load_weight(self, weight_path: str):
weight = torch.load(weight_path, map_location=self.device)
state_dict = {}
for key, value in weight["state_dict"].items():
new_key = key[4:]
state_dict[new_key] = value
return state_dict
def load_model_by_model_name(self):
if self.model_name == 'dbnet':
return DBNet(img_size=256, in_channels=3, num_classes=2).to(self.device)
if self.model_name == "cdnetv1":
return CDnetV1(num_classes=2).to(self.device)
if self.model_name == "cdnetv2":
return CDnetV2(num_classes=2).to(self.device)
if self.model_name == "hrcloud":
return HRCloudNet(num_classes=2).to(self.device)
if self.model_name == "mcdnet":
return MCDNet(in_channels=3, num_classes=2).to(self.device)
if self.model_name == "scnn":
return SCNN(num_classes=2).to(self.device)
if self.model_name == "unetmobv2":
return UNetMobV2(num_classes=2).to(self.device)
if self.model_name == "kappamask":
return KappaMask(num_classes=2, in_channels=3).to(self.device)
raise ValueError(f"{self.model_name}模型不存在")
def load_model(self):
weight_path = glob(f"logs/train/runs/hrcwhu_{self.model_name}/*/checkpoints/*.ckpt")[0]
model = self.load_model_by_model_name()
state_dict = self.load_weight(weight_path)
model.load_state_dict(state_dict)
model.eval()
return model
def load_dataset(self):
all_transform = albu.Compose(
[
albu.Resize(
height=HRCWHU.METAINFO["img_size"][1],
width=HRCWHU.METAINFO["img_size"][2],
always_apply=True
)
]
)
img_transform = albu.Compose([
albu.ToFloat(),
ToTensorV2()
])
ann_transform = None
val_pipeline = dict(
all_transform=all_transform,
img_transform=img_transform,
ann_transform=ann_transform,
)
dataloader = HRCWHUDataModule(
root="/home/liujie/liumin/cloudseg/data/hrcwhu",
train_pipeline=val_pipeline,
val_pipeline=val_pipeline,
test_pipeline=val_pipeline,
batch_size=1,
)
dataloader.setup()
test_dataloader = dataloader.test_dataloader()
return test_dataloader
# for data in test_dataloader:
# print(data['img'].shape,data['ann'].shape,data['img_path'],data['ann_path'],data['lac_type'])
# break
# torch.Size([1, 3, 256, 256])
# torch.Size([1, 256, 256])
# ['/home/liujie/liumin/cloudseg/data/hrcwhu/img_dir/test/barren_30.tif']
# ['/home/liujie/liumin/cloudseg/data/hrcwhu/ann_dir/test/barren_30.tif']
# ['barren']
def give_colors_to_mask(self, mask: np.ndarray):
"""
赋予mask颜色
"""
assert len(mask.shape) == 2, "Value Error,mask的形状为(height,width)"
colors_mask = np.zeros((mask.shape[0], mask.shape[1], 3)).astype(np.float32)
for color in range(2):
segc = (mask == color)
colors_mask[:, :, 0] += segc * (self.colors[color][0])
colors_mask[:, :, 1] += segc * (self.colors[color][1])
colors_mask[:, :, 2] += segc * (self.colors[color][2])
return colors_mask
@torch.no_grad
def pred_mask(self, x: torch.Tensor):
x = x.to(self.device)
self.macs, self.params = profile(self.model, inputs=(x,), verbose=False)
logits = self.model(x)
if isinstance(logits, tuple):
logits = logits[0]
fake_mask = torch.argmax(logits, 1).detach().cpu().squeeze(0).numpy()
return fake_mask
def np_pil_np(self, image: np.ndarray, filename="colors_ann"):
colors_np = self.give_colors_to_mask(image)
pil_np = Image.fromarray(np.uint8(colors_np))
return np.array(pil_np)
def run(self, delete_wadb_log=True):
# print(len(self.dataloader))
# 30
for data in track(self.dataloader):
img = data["img"]
ann = data["ann"].squeeze(0).numpy()
img_path = data["img_path"]
fake_mask = self.pred_mask(img)
colors_ann = self.np_pil_np(ann)
colors_fake = self.np_pil_np(fake_mask, "colors_fake")
image_name = img_path[0].split(os.path.sep)[-1].split(".")[0]
plt.subplot(1, 2, 1)
plt.axis("off")
plt.title("groud true")
plt.imshow(colors_ann)
plt.subplot(1, 2, 2)
plt.axis("off")
plt.title("predict mask")
plt.imshow(colors_fake)
wandb.log({image_name: wandb.Image(plt)})
wandb.log({"macs": self.macs, "params": self.params})
wandb.finish()
if delete_wadb_log and os.path.exists("wandb"):
shutil.rmtree("wandb")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model-name", type=str, default="dbnet")
parser.add_argument("--delete-wadb-log", type=bool, default=True)
args = parser.parse_args()
vis = WandbVis(model_name=args.model_name)
vis.run(delete_wadb_log=args.delete_wadb_log)