Spaces:
Runtime error
Runtime error
File size: 34,949 Bytes
599c141 db201c4 cf4e040 db201c4 cf4e040 db201c4 cf4e040 db201c4 cf4e040 db201c4 1979845 bd0b092 c71268c 0489802 c71268c db201c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 |
import gradio as gr
import pandas as pd
import os
import subprocess
import sys
# Install spaCy model
os.system("python -m spacy download en_core_web_sm")
def process_tweets(files, reset_processing=False):
# Save uploaded files
file_paths = []
for file in files:
if file.name.endswith('.csv'):
# Ensure directory exists
os.makedirs("projects_twitter_post", exist_ok=True)
# Save file to the directory
dest_path = f"projects_twitter_post/{os.path.basename(file.name)}"
os.system(f"cp {file.name} {dest_path}")
file_paths.append(dest_path)
if not file_paths:
return "No CSV files uploaded. Please upload CSV files containing tweet data."
# Run the processing script
reset_flag = "--reset" if reset_processing else ""
result = subprocess.run(
f"python process_tweet_huggingface.py {reset_flag}",
shell=True,
capture_output=True,
text=True
)
# Check if output files were created
output_files = []
for file_path in file_paths:
base_name = os.path.basename(file_path).replace('.csv', '')
processed_path = f"projects_twitter_post/{base_name}_processed.csv"
analysis_path = f"projects_twitter_post/{base_name}_analysis.csv"
if os.path.exists(processed_path):
output_files.append(processed_path)
if os.path.exists(analysis_path):
output_files.append(analysis_path)
return_files = [f for f in output_files if os.path.exists(f)]
log_output = result.stdout + "\n" + result.stderr
return log_output, return_files
with gr.Blocks() as demo:
gr.Markdown("# Crypto Tweet Processor")
gr.Markdown("Upload CSV files containing tweet data to process")
with gr.Row():
files_input = gr.File(file_count="multiple", label="Upload CSV Files")
reset_checkbox = gr.Checkbox(label="Reset Processing", value=False)
process_btn = gr.Button("Process Tweets")
output_text = gr.Textbox(label="Processing Log")
output_files = gr.File(label="Processed Files", file_count="multiple")
process_btn.click(
process_tweets,
inputs=[files_input, reset_checkbox],
outputs=[output_text, output_files]
)
# Add the modified processing script code here
with open("process_tweet_huggingface.py", "w") as f:
f.write(
import os
import re
import json
import numpy as np
import torch
import math
import gc
from tqdm import tqdm
from transformers import AutoTokenizer, AutoModelForMaskedLM, pipeline
import spacy
# ==============================================
# COLAB SETUP - Run these cells first in Colab
# ==============================================
# Uncomment and run this cell to mount your Google Drive
"""
from google.colab import drive
drive.mount('/content/drive')
"""
# Uncomment and run this cell to install required packages
"""
!pip install pandas tqdm transformers spacy
!python -m spacy download en_core_web_sm
"""
# Uncomment and run this cell to verify GPU availability
"""
import torch
print(f"GPU available: {torch.cuda.is_available()}")
print(f"GPU device: {torch.cuda.get_device_name(0) if torch.cuda.is_available() else 'None'}")
"""
# ==============================================
# Constants - Update these paths for your setup
# ==============================================
# Update this to your Google Drive path
DRIVE_PATH = "./projects_twitter_post"
OUTPUT_FOLDER = f"{DRIVE_PATH}"
CHECKPOINT_FILE = f"{OUTPUT_FOLDER}/processing_checkpoint.json"
BATCH_SIZE = 500 # Reduced batch size for GPU memory management
# Create output folder if it doesn't exist
if not os.path.exists(OUTPUT_FOLDER):
os.makedirs(OUTPUT_FOLDER)
# ==============================================
# Model Initialization with GPU Acceleration
# ==============================================
print("Loading RoBERTa model...")
model_name = "roberta-base"
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
# Initialize with GPU acceleration
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForMaskedLM.from_pretrained(model_name).to(device)
nlp_pipeline = pipeline("fill-mask", model=model_name, device=0 if torch.cuda.is_available() else -1)
# Initialize sentiment analysis pipeline
print("Loading sentiment analysis model...")
try:
# Using a Twitter-specific sentiment model for better results on social media text
sentiment_model = "cardiffnlp/twitter-roberta-base-sentiment"
sentiment_pipeline = pipeline("sentiment-analysis", model=sentiment_model, device=0 if torch.cuda.is_available() else -1)
SENTIMENT_AVAILABLE = True
except Exception as e:
print(f"Error loading sentiment model: {e}")
# Fallback to a simpler sentiment model if the Twitter-specific one fails
try:
sentiment_pipeline = pipeline("sentiment-analysis", device=0 if torch.cuda.is_available() else -1)
SENTIMENT_AVAILABLE = True
except:
print("Sentiment analysis not available. Continuing without sentiment analysis.")
SENTIMENT_AVAILABLE = False
# Try to load spaCy for basic text preprocessing
try:
import spacy
spacy_nlp = spacy.load("en_core_web_sm")
SPACY_AVAILABLE = True
except:
SPACY_AVAILABLE = False
print("SpaCy not available. Using basic text processing instead.")
# Crypto-specific keywords with hierarchical categories
CRYPTO_TAXONOMY = {
"COIN": {
"MAJOR": [
"bitcoin", "ethereum", "btc", "eth", "bnb", "xrp", "sol", "doge",
"cardano", "polkadot", "dot", "avalanche", "avax", "solana", "polygon", "matic"
],
"STABLECOIN": [
"tether", "usdt", "usdc", "busd", "dai", "frax", "tusd", "usdd", "lusd", "gusd", "husd"
],
"ALTCOIN": [
"litecoin", "ltc", "chainlink", "link", "stellar", "xlm", "dogecoin", "shib",
"tron", "trx", "cosmos", "atom", "near", "algo", "fantom", "ftm", "monero", "xmr"
],
"DEFI": [
"uniswap", "uni", "aave", "sushi", "cake", "comp", "maker", "mkr", "curve", "crv",
"yearn", "yfi", "compound", "balancer", "bal", "synthetix", "snx"
],
"UTILITY": [
"filecoin", "fil", "the graph", "grt", "arweave", "ar", "chainlink", "link",
"helium", "hnt", "theta", "icp"
],
"NFT": [
"enjin", "enj", "decentraland", "mana", "sandbox", "sand", "axie", "axs",
"gala", "apecoin", "ape", "flow", "ens", "stepn", "gmt"
]
},
"TECH": {
"CONCEPTS": [
"blockchain", "defi", "nft", "dao", "smart contract", "web3", "dapp", "protocol",
"consensus", "tokenomics", "tokenization"
],
"CHAIN_TYPES": [
"layer1", "layer2", "rollup", "sidechain", "mainnet", "testnet", "devnet",
"pow", "pos", "poh", "pbft", "dpos"
],
"PRIVACY": [
"zk", "zk-rollups", "zero-knowledge", "zkp", "zksnark", "zkstark", "mpc",
"privacy", "private", "anonymous", "confidential", "encrypted"
],
"SECTORS": [
"defi", "cefi", "gamefi", "metaverse", "socialfi", "fintech", "realfi",
"play-to-earn", "move-to-earn", "learn-to-earn", "x-to-earn", "defai", "depin", "desci",
"refi", "did", "dedata", "dedao", "deid", "deai", "degov", "decloud", "dehealth",
"decex", "deinsurance", "deworkplace", "public goods", "zk", "ordinals", "soulbound",
"onchain gaming", "ai agents", "infrastructure", "credentials", "restaking", "modular blockchain",
"liquid staking", "real world assets", "rwa", "synthetic assets", "account abstraction"
]
},
"ACTION": {
"TRADING": [
"buy", "sell", "long", "short", "margin", "leverage", "trade", "swap",
"arbitrage", "dca", "ape", "pump", "dump", "moon", "ath", "atl", "breakout",
"correction", "consolidation", "accumulate", "distribute", "front run", "front runner",
"front running", "mev", "sandwich attack"
],
"DEFI": [
"stake", "yield", "farm", "lend", "borrow", "supply", "withdraw", "claim",
"harvest", "flash loan", "liquidate", "collateralize", "wrap", "unwrap", "bridge",
"provide liquidity", "withdraw liquidity", "impermanent loss"
],
"GOVERNANCE": [
"delegate", "vote", "propose", "governance", "dao", "snapshot", "quorum",
"execution", "timelock", "veto"
],
"NFT": [
"mint", "airdrop", "whitelist", "burn", "floor price", "rarity", "trait", "pfp",
"collection", "secondary", "flip"
],
"DEVELOPMENT": [
"deploy", "audit", "fork", "bootstrap", "initiate", "merge", "split",
"rebase", "optimize", "gas optimization", "implement", "compile"
]
},
"PLATFORM": {
"EXCHANGE": [
"coinbase", "binance", "kraken", "kucoin", "ftx", "okx", "bybit", "bitfinex",
"huobi", "gate", "gemini", "bitstamp", "bittrex", "crypto.com", "cex", "dex"
],
"WALLET": [
"metamask", "phantom", "trust wallet", "ledger", "trezor", "argent", "rainbow",
"wallet", "hot wallet", "cold storage", "hardware wallet", "seed phrase"
],
"NFT_MARKET": [
"opensea", "rarible", "foundation", "superrare", "looksrare", "blur", "magic eden",
"nifty gateway", "zora", "x2y2", "element"
],
"INFRA": [
"alchemy", "infura", "moralis", "quicknode", "ceramic", "arweave", "ipfs",
"node", "rpc", "api", "indexer", "subgraph"
]
},
"NETWORK": {
"LAYER1": [
"ethereum", "bitcoin", "solana", "avalanche", "polygon", "bnb chain", "bsc",
"cardano", "polkadot", "cosmos", "algorand", "tezos", "flow", "near", "tron"
],
"LAYER2": [
"arbitrum", "optimism", "zksync", "starknet", "base", "polygon", "loopring",
"immutablex", "metis", "boba", "aztec", "validium", "zkevm"
],
"INTEROPERABILITY": [
"cosmos", "polkadot", "kusama", "moonbeam", "moonriver", "parachains", "relay chain",
"ibc", "cross-chain", "bridge"
]
},
"EVENTS": {
"MARKET": [
"bull market", "bear market", "bull run", "bear trap", "bull trap", "halving",
"capitulation", "golden cross", "death cross", "breakout", "resistance", "support"
],
"SECURITY": [
"hack", "exploit", "vulnerability", "scam", "phishing", "rug pull", "honeypot",
"flash crash", "attack", "51% attack", "front running", "sandwich attack", "mev extraction"
],
"TOKEN_EVENTS": [
"airdrop", "token unlock", "vesting", "ico", "ido", "ito", "ieo", "fair launch",
"private sale", "seed round", "listing", "delisting"
]
},
"METRICS": {
"FINANCIAL": [
"apy", "apr", "roi", "tvl", "market cap", "mcap", "volume", "liquidity", "supply",
"circulating supply", "total supply", "max supply", "inflation", "deflation",
"volatility", "dominance"
],
"TECHNICAL": [
"gas fee", "gas price", "gas limit", "slippage", "impermanent loss", "yield",
"hashrate", "difficulty", "tps", "latency", "finality", "block time", "block size",
"block reward"
]
},
"COMMUNITY": {
"ROLES": [
"whale", "degen", "anon", "influencer", "kol", "thought leader", "ambassador",
"advocate", "og", "contributor", "dev", "builder", "founder", "investor", "vc",
"angel", "team", "core team", "front runner", "mev bot", "searcher", "validator",
"miner", "node operator", "liquidity provider", "market maker", "arbitrageur"
],
"SLANG": [
"diamond hands", "paper hands", "wagmi", "ngmi", "gm", "gn", "ser", "based",
"crypto twitter", "ct", "alpha", "dyor", "fomo", "fud", "hodl", "rekt"
]
}
}
# ==============================================
# Helper Functions
# ==============================================
def clear_gpu_memory():
"""Clear GPU memory to prevent OOM errors"""
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
def load_checkpoint():
"""Load processing checkpoint if it exists"""
if os.path.exists(CHECKPOINT_FILE):
with open(CHECKPOINT_FILE, 'r') as f:
return json.load(f)
return {'last_processed_index': 0}
def save_checkpoint(index):
"""Save the current processing index to a checkpoint file"""
with open(CHECKPOINT_FILE, 'w') as f:
json.dump({'last_processed_index': index}, f)
def identify_crypto_entities(text: str) -> list:
"""
Identify crypto-specific entities in text using the hierarchical taxonomy.
Args:
text (str): Text to analyze
Returns:
list: List of tuples (entity, main_category, sub_category)
"""
if not isinstance(text, str):
return []
text_lower = text.lower()
found_entities = []
# Search for each entity in the taxonomy
for main_cat, subcats in CRYPTO_TAXONOMY.items():
for subcat, terms in subcats.items():
for term in terms:
# Avoid matching partial words (ensure word boundaries)
pattern = r'\b' + re.escape(term) + r'\b'
if re.search(pattern, text_lower):
found_entities.append((term, main_cat, subcat))
return found_entities
def clean_text(text: str) -> str:
"""Clean text while preserving mentions and hashtags"""
if not isinstance(text, str):
return ""
# Remove URLs
text = re.sub(r'http\S+', '', text)
# Remove non-alphanumeric characters (except mentions, hashtags, and spaces)
text = re.sub(r'[^\w\s@#]', ' ', text)
# Remove extra whitespace
text = re.sub(r'\s+', ' ', text).strip()
return text.lower()
def process_nlp_text(text: str) -> str:
"""Process text with advanced NLP (lemmatization, stopword removal)"""
if not isinstance(text, str):
return ""
# Basic cleaning
text = clean_text(text)
if SPACY_AVAILABLE:
# Process with spaCy for advanced NLP
doc = spacy_nlp(text)
# Lemmatize and remove stopwords
processed_tokens = [token.lemma_ for token in doc if not token.is_stop and not token.is_punct]
return " ".join(processed_tokens)
else:
# Fallback to basic cleaning if spaCy is not available
return text
def extract_mentions(text: str) -> list:
"""Extract @mentions from text"""
if not isinstance(text, str):
return []
return re.findall(r'@(\w+)', text)
def extract_hashtags(text: str) -> list:
"""Extract #hashtags from text"""
if not isinstance(text, str):
return []
return re.findall(r'#(\w+)', text)
def extract_urls(text: str) -> list:
"""Extract URLs from text"""
if not isinstance(text, str):
return []
urls = re.findall(r'(https?://\S+)', text)
return urls
def analyze_sentiment(text: str) -> dict:
"""
Analyze the sentiment of a text using the sentiment analysis pipeline.
Args:
text (str): The text to analyze
Returns:
dict: A dictionary containing sentiment label and score
"""
if not SENTIMENT_AVAILABLE or not text.strip():
return {"sentiment": "unknown", "sentiment_score": 0.0, "sentiment_magnitude": 0.0}
try:
# Pre-process the text to improve sentiment analysis accuracy
# Limit text length to avoid errors with very long tweets
truncated_text = text[:512] if len(text) > 512 else text
# Get sentiment prediction
sentiment_result = sentiment_pipeline(truncated_text)[0]
label = sentiment_result['label']
score = sentiment_result['score']
# Map to standardized format (positive, negative, neutral)
sentiment_mapping = {
'LABEL_0': 'negative',
'LABEL_1': 'neutral',
'LABEL_2': 'positive',
'NEGATIVE': 'negative',
'NEUTRAL': 'neutral',
'POSITIVE': 'positive'
}
standardized_sentiment = sentiment_mapping.get(label, label.lower())
# Calculate magnitude (confidence) - useful for filtering high-confidence sentiments
magnitude = abs(score - 0.5) * 2 if standardized_sentiment != 'neutral' else score
return {
"sentiment": standardized_sentiment,
"sentiment_score": score,
"sentiment_magnitude": magnitude
}
except Exception as e:
print(f"Error in sentiment analysis: {e}")
return {"sentiment": "error", "sentiment_score": 0.0, "sentiment_magnitude": 0.0}
def process_with_nlp(text: str) -> dict:
"""
Process text with NLP to extract named entities, key phrases, etc.
Args:
text (str): The text to process
Returns:
dict: A dictionary containing NLP processing results
"""
results = {
"named_entities": [],
"pos_tags": [],
"lemmatized_tokens": [],
"key_phrases": [],
"important_nouns": [],
"sentiment_analysis": {"sentiment": "unknown", "sentiment_score": 0.0, "sentiment_magnitude": 0.0}
}
if not text or text.isspace():
return results
# First, analyze sentiment
results["sentiment_analysis"] = analyze_sentiment(text)
try:
# Use spaCy for advanced NLP if available
if SPACY_AVAILABLE:
doc = spacy_nlp(text)
# Extract named entities (excluding crypto entities which are handled separately)
results["named_entities"] = [(ent.text, ent.label_) for ent in doc.ents]
# Extract POS tags for content words
results["pos_tags"] = [(token.text, token.pos_) for token in doc
if token.pos_ in ["NOUN", "VERB", "ADJ", "ADV"] and not token.is_stop]
# Get lemmatized tokens (normalized words)
results["lemmatized_tokens"] = [token.lemma_ for token in doc
if not token.is_stop and not token.is_punct and token.text.strip()]
# Extract important nouns (potential topics)
results["important_nouns"] = [token.text for token in doc
if token.pos_ == "NOUN" and not token.is_stop]
# Try to extract key phrases using noun chunks
results["key_phrases"] = [chunk.text for chunk in doc.noun_chunks
if len(chunk.text.split()) > 1]
# If key phrases are empty, use RoBERTa to attempt extraction
if not results["key_phrases"] and len(text.split()) > 3:
try:
# Create a masked sentence from the text
words = text.split()
if len(words) > 5:
# Get 3 random positions to mask
import random
positions = sorted(random.sample(range(len(words)), min(3, len(words))))
# Create masked sentences
key_terms = []
for pos in positions:
words_copy = words.copy()
words_copy[pos] = tokenizer.mask_token
masked_text = " ".join(words_copy)
# Get predictions for the masked token
predictions = nlp_pipeline(masked_text, top_k=2)
for prediction in predictions:
key_terms.append(prediction["token_str"].strip())
results["key_phrases"].extend(key_terms)
except Exception as e:
print(f"Error in key phrase extraction: {e}")
# Ensure all results are strings for CSV output
results["named_entities"] = ";".join([f"{ent[0]}:{ent[1]}" for ent in results["named_entities"]])
results["pos_tags"] = ";".join([f"{tag[0]}:{tag[1]}" for tag in results["pos_tags"]])
results["lemmatized_tokens"] = ";".join(results["lemmatized_tokens"])
results["key_phrases"] = ";".join(list(set(results["key_phrases"]))) # Remove duplicates
results["important_nouns"] = ";".join(list(set(results["important_nouns"]))) # Remove duplicates
except Exception as e:
print(f"Error in NLP processing: {e}")
# Clear GPU memory after processing
if (results["named_entities"].count(";") > 100) or (len(text) > 1000):
clear_gpu_memory()
return results
def process_tweet(text: str) -> tuple:
"""
Process a tweet to extract mentions, hashtags, URLs, crypto entities, and perform NLP analysis.
Also performs sentiment analysis.
Args:
text (str): The tweet text to process
Returns:
tuple: A tuple containing mentions, hashtags, URLs, NLP results, and sentiment analysis
"""
if not text or not isinstance(text, str):
return [], [], [], "", "", {}, {"sentiment": "unknown", "sentiment_score": 0.0, "sentiment_magnitude": 0.0}
# Clean the text while preserving mentions and hashtags
cleaned_text = clean_text(text)
# Process text with NLP
processed_text = process_nlp_text(text)
# Extract mentions, hashtags, and URLs
mentions = extract_mentions(text)
hashtags = extract_hashtags(text)
urls = extract_urls(text)
# Identify crypto entities
crypto_entities = identify_crypto_entities(text)
# Process with NLP models
nlp_results = process_with_nlp(text)
# Ensure we have the sentiment analysis results
sentiment_results = nlp_results.pop("sentiment_analysis", {"sentiment": "unknown", "sentiment_score": 0.0, "sentiment_magnitude": 0.0})
# Add crypto entities to the named entities
formatted_crypto_entities = [f"{entity}:{main_cat}.{sub_cat}" for entity, main_cat, sub_cat in crypto_entities]
# If named_entities is a string (joined with semicolons), we need to handle differently
if isinstance(nlp_results.get("named_entities", ""), str):
nlp_results["named_entities"] = nlp_results.get("named_entities", "")
if nlp_results["named_entities"] and formatted_crypto_entities:
nlp_results["named_entities"] += ";" + ";".join(formatted_crypto_entities)
elif formatted_crypto_entities:
nlp_results["named_entities"] = ";".join(formatted_crypto_entities)
return mentions, hashtags, urls, cleaned_text, processed_text, nlp_results, sentiment_results
def process_batch(df_batch):
"""Process a batch of tweets"""
processed_data = []
for idx, row in df_batch.iterrows():
text = row.get('text', '')
# Process the tweet
mentions, hashtags, urls, cleaned_text, processed_text, nlp_results, sentiment_results = process_tweet(text)
# Create a dictionary with the results
result = {
'id': row.get('id', ''),
'original_text': text, # Store the original text
'cleaned_text': cleaned_text,
'nlp_processed_text': processed_text,
'extracted_mentions': ';'.join(mentions),
'extracted_hashtags': ';'.join(hashtags),
'extracted_urls': ';'.join(urls),
'named_entities': nlp_results.get('named_entities', ''),
'pos_tags': nlp_results.get('pos_tags', ''),
'lemmatized_tokens': nlp_results.get('lemmatized_tokens', ''),
'key_phrases': nlp_results.get('key_phrases', ''),
'important_nouns': nlp_results.get('important_nouns', ''),
'sentiment': sentiment_results.get('sentiment', 'unknown'),
'sentiment_score': sentiment_results.get('sentiment_score', 0.0),
'sentiment_magnitude': sentiment_results.get('sentiment_magnitude', 0.0)
}
processed_data.append(result)
return pd.DataFrame(processed_data)
# ==============================================
# Main Processing Function
# ==============================================
def main(reset_checkpoint=False, input_file=None):
"""
Main function to process tweets
Args:
reset_checkpoint (bool): Whether to reset the checkpoint and process all data
input_file (str): Optional specific input file to process, otherwise processes all CSV files
"""
if reset_checkpoint and os.path.exists(CHECKPOINT_FILE):
os.remove(CHECKPOINT_FILE)
print("Checkpoint reset. Will process all data from the beginning.")
# Get list of CSV files to process
if input_file:
# Process a specific file
input_files = [input_file]
else:
# Find all CSV files in the OUTPUT_FOLDER
import glob
input_files = glob.glob(f"{OUTPUT_FOLDER}/*.csv")
# Exclude our output files
input_files = [f for f in input_files if not any(x in f for x in ["_processed.csv", "_analysis.csv"])]
if not input_files:
print(f"No input CSV files found in {OUTPUT_FOLDER}")
return
print(f"Found {len(input_files)} files to process: {[os.path.basename(f) for f in input_files]}")
# Process each file
for input_csv in input_files:
print(f"\nProcessing file: {os.path.basename(input_csv)}")
print("Loading dataset...")
# Check if input file exists
if not os.path.exists(input_csv):
print(f"Input file {input_csv} not found. Skipping.")
continue
# Load the dataset
try:
df = pd.read_csv(input_csv)
print(f"Loaded dataset with {len(df)} records and {len(df.columns)} columns.")
except Exception as e:
print(f"Error loading {input_csv}: {e}")
continue
# Load checkpoint if it exists
checkpoint = load_checkpoint()
start_idx = checkpoint['last_processed_index']
# For simplicity, reset checkpoints between files
start_idx = 0
save_checkpoint(0)
print("\nProcessing tweets...")
print(f"Starting from index {start_idx}")
# Filter to only unprocessed rows
df_to_process = df.iloc[start_idx:]
if len(df_to_process) == 0:
print("No new data to process in this file.")
continue
# Process in batches for memory efficiency
batch_size = BATCH_SIZE
num_batches = math.ceil(len(df_to_process) / batch_size)
print(f"Processing in {num_batches} batches of {batch_size} records each")
processed_batches = []
# Create progress bar
for i in tqdm(range(num_batches)):
batch_start = i * batch_size
batch_end = min((i + 1) * batch_size, len(df_to_process))
# Get current batch
df_batch = df_to_process.iloc[batch_start:batch_end]
# Process the batch
processed_batch = process_batch(df_batch)
processed_batches.append(processed_batch)
# Save checkpoint
save_checkpoint(start_idx + batch_end)
# Save intermediate results every 5 batches to prevent data loss in case of session timeout
if i % 5 == 0 and i > 0:
file_basename = os.path.splitext(os.path.basename(input_csv))[0]
interim_df = pd.concat(processed_batches, ignore_index=True)
interim_file = f"{OUTPUT_FOLDER}/{file_basename}_interim_{i}.csv"
interim_df.to_csv(interim_file, index=False)
print(f"\nSaved interim results to {interim_file}")
# Clear memory
clear_gpu_memory()
# Combine all batches
if processed_batches:
file_basename = os.path.splitext(os.path.basename(input_csv))[0]
final_df = pd.concat(processed_batches, ignore_index=True)
# Calculate statistics columns
final_df["mention_count"] = final_df["extracted_mentions"].str.count(";") + (final_df["extracted_mentions"] != "").astype(int)
final_df["hashtag_count"] = final_df["extracted_hashtags"].str.count(";") + (final_df["extracted_hashtags"] != "").astype(int)
final_df["entity_count"] = final_df["named_entities"].str.count(";") + (final_df["named_entities"] != "").astype(int)
# Save the full processed dataset
output_file = f"{OUTPUT_FOLDER}/{file_basename}_processed.csv"
final_df.to_csv(output_file, index=False)
print(f"Processed data saved to {output_file}")
# Create a lighter version with just the analysis
analysis_columns = [
"id", "original_text", "cleaned_text", "nlp_processed_text",
"extracted_mentions", "extracted_hashtags", "extracted_urls",
"named_entities", "key_phrases", "important_nouns",
"sentiment", "sentiment_score", "sentiment_magnitude",
"mention_count", "hashtag_count", "entity_count"
]
# Ensure all columns exist before subsetting
available_columns = [col for col in analysis_columns if col in final_df.columns]
analysis_df = final_df[available_columns]
analysis_file = f"{OUTPUT_FOLDER}/{file_basename}_analysis.csv"
analysis_df.to_csv(analysis_file, index=False)
print(f"Analysis results saved to {analysis_file}")
# Print statistics
print(f"\nAnalysis completed successfully!")
print(f"Total records: {len(final_df)}")
print(f"Tweets with Mentions: {(final_df['extracted_mentions'] != '').sum()}")
print(f"Tweets with Hashtags: {(final_df['extracted_hashtags'] != '').sum()}")
print(f"Tweets with Named Entities: {(final_df['named_entities'] != '').sum()}")
# Print sentiment statistics
sentiment_counts = final_df['sentiment'].value_counts()
print("\nSentiment Distribution:")
for sentiment, count in sentiment_counts.items():
percentage = (count / len(final_df)) * 100
print(f" {sentiment}: {count} tweets ({percentage:.1f}%)")
# Get average sentiment scores
avg_score = final_df['sentiment_score'].mean()
avg_magnitude = final_df['sentiment_magnitude'].mean()
print(f"\nAverage sentiment score: {avg_score:.3f}")
print(f"Average sentiment magnitude: {avg_magnitude:.3f}")
# Get top entities by sentiment
positive_entities = []
for idx, row in final_df[final_df['sentiment'] == 'positive'].iterrows():
entities = row['named_entities'].split(';') if isinstance(row['named_entities'], str) and row['named_entities'] else []
for entity in entities:
if entity and ':' in entity:
entity_name = entity.split(':')[0]
positive_entities.append(entity_name)
# Get the most common positive entities
from collections import Counter
top_positive = Counter(positive_entities).most_common(5)
if top_positive:
print("\nTop entities with positive sentiment:")
for entity, count in top_positive:
print(f" {entity}: {count} mentions")
# Print sample results
print("\nSample of processing results:")
for i, row in analysis_df.head(3).iterrows():
print(f"\nOriginal Text: {row['original_text']}")
print(f"Cleaned Text: {row['cleaned_text']}")
print(f"NLP Processed Text: {row['nlp_processed_text']}")
print(f"Mentions: {row['extracted_mentions']}")
print(f"Hashtags: {row['extracted_hashtags']}")
print(f"Named Entities: {row['named_entities']}")
print(f"Key Phrases: {row['key_phrases']}")
print(f"Sentiment: {row['sentiment']} (Score: {row['sentiment_score']:.3f}, Magnitude: {row['sentiment_magnitude']:.3f})")
print("-" * 80)
# Delete interim files
import glob
interim_files = glob.glob(f"{OUTPUT_FOLDER}/{file_basename}_interim_*.csv")
for f in interim_files:
try:
os.remove(f)
print(f"Deleted interim file: {os.path.basename(f)}")
except:
pass
# Clear memory after processing each file
clear_gpu_memory()
else:
print("No data processed for this file.")
# Clean up checkpoint file after successful processing
if os.path.exists(CHECKPOINT_FILE):
os.remove(CHECKPOINT_FILE)
print("\nAll files processed successfully!")
# ==============================================
# Colab Usage Example
# ==============================================
"""
# EXAMPLE USAGE IN COLAB:
# 1. Install packages and mount drive
from google.colab import drive
drive.mount('/content/drive')
# 2. Process one specific file
input_file = "/content/drive/MyDrive/projects_twitter_post/zilliqa.csv"
main(reset_checkpoint=True, input_file=input_file)
# 3. Process all files
main(reset_checkpoint=True)
"""
if __name__ == "__main__":
import sys
# Check if --reset flag is provided
reset_checkpoint = "--reset" in sys.argv
# Check if --file flag is provided
input_file = None
if "--file" in sys.argv:
try:
input_file = sys.argv[sys.argv.index("--file") + 1]
except IndexError:
print("Error: --file flag requires a filename argument")
sys.exit(1)
# Run the main function
main(reset_checkpoint=reset_checkpoint, input_file=input_file) )
demo.launch() |