Spaces:
Sleeping
Sleeping
File size: 7,535 Bytes
4d6e8c2 32590b1 a66df45 b134905 a66df45 4d6e8c2 a66df45 4d6e8c2 ea428f3 1c33274 70f5f26 f5ac2a0 c01695c f5ac2a0 93741cc c01695c 93741cc c01695c f5ac2a0 1c33274 70f5f26 4d6e8c2 70f5f26 4d6e8c2 76fccaf 4d6e8c2 70f5f26 4d6e8c2 92fa037 a66df45 f5ac2a0 a66df45 92fa037 a66df45 93741cc c01695c 93741cc c01695c 93741cc c01695c a66df45 70f5f26 4d6e8c2 5518620 4d6e8c2 70f5f26 4d6e8c2 1c33274 4d6e8c2 5518620 4d6e8c2 92fa037 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import random
from transformers import pipeline, AutoConfig
import os
from concurrent.futures import ThreadPoolExecutor
from typing import List, Dict, Tuple
import numpy as np
import torch
from .utils.evaluation import TextEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info
# Disable torch compile
os.environ["TORCH_COMPILE_DISABLE"] = "1"
router = APIRouter()
DESCRIPTION = "ModernBert fine-tuned"
ROUTE = "/text"
class TextClassifier:
def __init__(self):
# Add retry mechanism for model initialization
max_retries = 3
for attempt in range(max_retries):
try:
self.config = AutoConfig.from_pretrained("camillebrl/ModernBERT-envclaims-overfit")
self.label2id = self.config.label2id
self.classifier = pipeline(
"text-classification",
"camillebrl/ModernBERT-envclaims-overfit",
device="cpu",
batch_size=16
)
print("Model initialized successfully")
break
except Exception as e:
if attempt == max_retries - 1:
raise Exception(f"Failed to initialize model after {max_retries} attempts: {str(e)}")
print(f"Attempt {attempt + 1} failed, retrying...")
time.sleep(1)
def process_batch(self, batch: List[str], batch_idx: int) -> Tuple[List[int], int]:
"""Process a batch of texts and return their predictions"""
max_retries = 3
for attempt in range(max_retries):
try:
print(f"Processing batch {batch_idx} with {len(batch)} items (attempt {attempt + 1})")
# Process texts one by one in case of errors
predictions = []
for text in batch:
try:
pred = self.classifier(text)
pred_label = self.label2id[pred[0]["label"]]
predictions.append(pred_label)
except Exception as e:
print(f"Error processing text in batch {batch_idx}: {str(e)}")
if not predictions:
raise Exception("No predictions generated for batch")
print(f"Completed batch {batch_idx} with {len(predictions)} predictions")
return predictions, batch_idx
except Exception as e:
if attempt == max_retries - 1:
print(f"Final error in batch {batch_idx}: {str(e)}")
return [0] * len(batch), batch_idx # Return default predictions instead of empty list
print(f"Error in batch {batch_idx} (attempt {attempt + 1}): {str(e)}")
time.sleep(1)
@router.post(ROUTE, tags=["Text Task"],
description=DESCRIPTION)
async def evaluate_text(request: TextEvaluationRequest):
"""
Evaluate text classification for climate disinformation detection.
Current Model: Random Baseline
- Makes random predictions from the label space (0-7)
- Used as a baseline for comparison
"""
# Get space info
username, space_url = get_space_info()
# Define the label mapping
LABEL_MAPPING = {
"0_not_relevant": 0,
"1_not_happening": 1,
"2_not_human": 2,
"3_not_bad": 3,
"4_solutions_harmful_unnecessary": 4,
"5_science_unreliable": 5,
"6_proponents_biased": 6,
"7_fossil_fuels_needed": 7
}
# Load and prepare the dataset
dataset = load_dataset(request.dataset_name)
# Convert string labels to integers
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
# Split dataset
train_test = dataset["train"]
test_dataset = dataset["test"]
# Start tracking emissions
tracker.start()
tracker.start_task("inference")
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE CODE HERE
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
#--------------------------------------------------------------------------------------------
true_labels = test_dataset["label"]
# Initialize the model once
classifier = TextClassifier()
# Prepare batches
batch_size = 32
quotes = test_dataset["quote"]
num_batches = len(quotes) // batch_size + (1 if len(quotes) % batch_size != 0 else 0)
batches = [
quotes[i * batch_size:(i + 1) * batch_size]
for i in range(num_batches)
]
# Initialize batch_results before parallel processing
batch_results = [[] for _ in range(num_batches)]
# Process batches in parallel
max_workers = min(os.cpu_count(), 4) # Limit to 4 workers or CPU count
print(f"Processing with {max_workers} workers")
with ThreadPoolExecutor(max_workers=max_workers) as executor:
# Submit all batches for processing
future_to_batch = {
executor.submit(
classifier.process_batch,
batch,
idx
): idx for idx, batch in enumerate(batches)
}
# Collect results in order
for future in future_to_batch:
batch_idx = future_to_batch[future]
try:
predictions, idx = future.result()
if predictions: # Only store non-empty predictions
batch_results[idx] = predictions
print(f"Stored results for batch {idx} ({len(predictions)} predictions)")
except Exception as e:
print(f"Failed to get results for batch {batch_idx}: {e}")
# Use default predictions instead of empty list
batch_results[batch_idx] = [0] * len(batches[batch_idx])
# Flatten predictions while maintaining order
predictions = []
for batch_preds in batch_results:
if batch_preds is not None:
predictions.extend(batch_preds)
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE STOPS HERE
#--------------------------------------------------------------------------------------------
# Stop tracking emissions
emissions_data = tracker.stop_task()
# Calculate accuracy
accuracy = accuracy_score(true_labels, predictions)
print("accuracy : ", accuracy)
# Prepare results dictionary
results = {
"username": username,
"space_url": space_url,
"submission_timestamp": datetime.now().isoformat(),
"model_description": DESCRIPTION,
"accuracy": float(accuracy),
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
"emissions_gco2eq": emissions_data.emissions * 1000,
"emissions_data": clean_emissions_data(emissions_data),
"api_route": ROUTE,
"dataset_config": {
"dataset_name": request.dataset_name,
"test_size": request.test_size,
"test_seed": request.test_seed
}
}
print("results : ", results)
return results |