File size: 4,826 Bytes
26776bf
 
3cf9bb8
26776bf
 
70ee030
f709b40
d7debf4
f709b40
 
 
 
 
 
3cf9bb8
f709b40
 
2248513
 
3cf9bb8
f709b40
30480ad
a699d4a
f74d64c
8f5e87a
 
52b624f
 
 
 
861654a
f709b40
 
 
3cf9bb8
6c97556
f74d64c
f709b40
 
 
 
c80f584
f709b40
 
 
 
a699d4a
f709b40
c80f584
f709b40
 
0dc2f2a
6c97556
 
8f5e87a
6c97556
 
 
 
 
f709b40
0dc2f2a
 
 
 
 
 
f709b40
 
4322daa
8f5e87a
 
 
 
 
 
4b98d45
8f5e87a
 
2248513
f709b40
8f5e87a
f709b40
 
 
f74d64c
f709b40
 
 
 
 
48c5ac5
f709b40
c80f584
f709b40
 
 
26776bf
0dc2f2a
 
f709b40
ea4e3ad
 
 
 
 
 
a699d4a
ea4e3ad
 
7839a66
db5a244
45b92d7
db5a244
 
eec23c4
 
db5a244
 
 
eec23c4
 
52b624f
 
 
3cf9bb8
52b624f
 
 
6c97556
 
ea4e3ad
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

# ===========================================
# ver01.01-5.workload-----app.py
# ===========================================

import asyncio
import os
import re
import time
import json

import chainlit as cl

from langchain import hub
from langchain_openai import OpenAI
from langchain.chains import LLMChain, APIChain
from langchain_core.prompts import PromptTemplate
from langchain.memory.buffer import ConversationBufferMemory

from api_docs_mck import api_docs_str 

OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")

daysoff_assistant_template = """
You are a customer support assistant (โ€™kundeservice AI assistentโ€™) for Daysoff.no
By default, you respond in Norwegian language, using a warm, direct and professional tone. 
You are equipped to assist users by providing detailed information linked to specific 
booking IDs (bestillingskode), offering general insights about DaysOff's services, addressing 
questions related to the company's privacy policy (personvernspolicy), and answering frequently 
asked questions about DaysOff's firmahytteordning.
Chat History: {chat_history}
Question: {question}
Answer:
"""
daysoff_assistant_prompt = PromptTemplate(
    input_variables=['chat_history', 'question'],
    template=daysoff_assistant_template
)

api_url_template = """
Given the following API Documentation for Daysoff's official
booking information API: {api_docs}
Your task is to construct the most efficient API URL to answer
the user's question, ensuring the
call is optimized to include only the necessary information.
Question: {question}
API URL:
"""
api_url_prompt = PromptTemplate(input_variables=['api_docs', 'question'],
                                template=api_url_template)

api_response_template = """
With the API Documentation for Daysoff's official API: {api_docs} in mind,
and  the specific user question: {question} in mind,
and given this API URL: {api_url} for querying,
here is the response from Daysoff's API: {api_response}.
Please provide an summary (in Norwegian) that directly addresses the user's question,
and focusing on delivering the answer with clarity and conciseness,
as if a human customer service agent is providing this information.
Summary:
"""

api_response_prompt = PromptTemplate(
    input_variables=['api_docs', 'question', 'api_url', 'api_response'],
    template=api_response_template
)

@cl.on_chat_start
def setup_multiple_chains():

    llm = OpenAI(
        model='gpt-3.5-turbo-instruct',
        temperature=0.7, 
        openai_api_key=OPENAI_API_KEY,
        #max_tokens=512, 
        top_p=0.9,  
        frequency_penalty=0.5,
        presence_penalty=0.3   
    )
    
    conversation_memory = ConversationBufferMemory(memory_key="chat_history",
                                                   max_len=300,
                                                   return_messages=True,
                                                   )
    llm_chain = LLMChain(llm=llm,
                         prompt=daysoff_assistant_prompt,
                         memory=conversation_memory
                        )

    cl.user_session.set("llm_chain", llm_chain)

    api_chain = APIChain.from_llm_and_api_docs(
        llm=llm,
        api_docs=api_docs_str,
        api_url_prompt=api_url_prompt,
        api_response_prompt=api_response_prompt,
        verbose=True,
        limit_to_domains=None 
    )

    cl.user_session.set("api_chain", api_chain)

@cl.on_message
async def handle_message(message: cl.Message):
    user_message = message.content
    llm_chain = cl.user_session.get("llm_chain")
    api_chain = cl.user_session.get("api_chain")
    
    booking_pattern = r'\b[A-Z]{6}\d{6}\b' 
    base_url = "https://670dccd0073307b4ee447f2f.mockapi.io/daysoff/api/V1/booking"

    if re.search(booking_pattern, user_message):  
        bestillingskode = re.search(booking_pattern, user_message).group(0)  
        question = f"Retrieve information for booking ID {base_url}?search={bestillingskode}"
   
        response = await api_chain.acall(
            {
                "bestillingskode": bestillingskode,
                "question": question
              
            },
            callbacks=[cl.AsyncLangchainCallbackHandler()])

    elif any(keyword in user_message for keyword in ["firmahytteordning", "personvernspolicy",
                                                   "faq_ansatte", "faq_utleiere"]): 
        
        response = await api_chain.acall(user_message,
                                         callbacks=[cl.AsyncLangchainCallbackHandler()])
    
    else:    
        response = await llm_chain.acall(user_message, callbacks=[cl.AsyncLangchainCallbackHandler()])

    response_key = "output" if "output" in response else "text"
    await cl.Message(response.get(response_key, "")).send()
    return message.content