Spaces:
Sleeping
Sleeping
File size: 4,826 Bytes
26776bf 3cf9bb8 26776bf 70ee030 f709b40 d7debf4 f709b40 3cf9bb8 f709b40 2248513 3cf9bb8 f709b40 30480ad a699d4a f74d64c 8f5e87a 52b624f 861654a f709b40 3cf9bb8 6c97556 f74d64c f709b40 c80f584 f709b40 a699d4a f709b40 c80f584 f709b40 0dc2f2a 6c97556 8f5e87a 6c97556 f709b40 0dc2f2a f709b40 4322daa 8f5e87a 4b98d45 8f5e87a 2248513 f709b40 8f5e87a f709b40 f74d64c f709b40 48c5ac5 f709b40 c80f584 f709b40 26776bf 0dc2f2a f709b40 ea4e3ad a699d4a ea4e3ad 7839a66 db5a244 45b92d7 db5a244 eec23c4 db5a244 eec23c4 52b624f 3cf9bb8 52b624f 6c97556 ea4e3ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
# ===========================================
# ver01.01-5.workload-----app.py
# ===========================================
import asyncio
import os
import re
import time
import json
import chainlit as cl
from langchain import hub
from langchain_openai import OpenAI
from langchain.chains import LLMChain, APIChain
from langchain_core.prompts import PromptTemplate
from langchain.memory.buffer import ConversationBufferMemory
from api_docs_mck import api_docs_str
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")
daysoff_assistant_template = """
You are a customer support assistant (โkundeservice AI assistentโ) for Daysoff.no
By default, you respond in Norwegian language, using a warm, direct and professional tone.
You are equipped to assist users by providing detailed information linked to specific
booking IDs (bestillingskode), offering general insights about DaysOff's services, addressing
questions related to the company's privacy policy (personvernspolicy), and answering frequently
asked questions about DaysOff's firmahytteordning.
Chat History: {chat_history}
Question: {question}
Answer:
"""
daysoff_assistant_prompt = PromptTemplate(
input_variables=['chat_history', 'question'],
template=daysoff_assistant_template
)
api_url_template = """
Given the following API Documentation for Daysoff's official
booking information API: {api_docs}
Your task is to construct the most efficient API URL to answer
the user's question, ensuring the
call is optimized to include only the necessary information.
Question: {question}
API URL:
"""
api_url_prompt = PromptTemplate(input_variables=['api_docs', 'question'],
template=api_url_template)
api_response_template = """
With the API Documentation for Daysoff's official API: {api_docs} in mind,
and the specific user question: {question} in mind,
and given this API URL: {api_url} for querying,
here is the response from Daysoff's API: {api_response}.
Please provide an summary (in Norwegian) that directly addresses the user's question,
and focusing on delivering the answer with clarity and conciseness,
as if a human customer service agent is providing this information.
Summary:
"""
api_response_prompt = PromptTemplate(
input_variables=['api_docs', 'question', 'api_url', 'api_response'],
template=api_response_template
)
@cl.on_chat_start
def setup_multiple_chains():
llm = OpenAI(
model='gpt-3.5-turbo-instruct',
temperature=0.7,
openai_api_key=OPENAI_API_KEY,
#max_tokens=512,
top_p=0.9,
frequency_penalty=0.5,
presence_penalty=0.3
)
conversation_memory = ConversationBufferMemory(memory_key="chat_history",
max_len=300,
return_messages=True,
)
llm_chain = LLMChain(llm=llm,
prompt=daysoff_assistant_prompt,
memory=conversation_memory
)
cl.user_session.set("llm_chain", llm_chain)
api_chain = APIChain.from_llm_and_api_docs(
llm=llm,
api_docs=api_docs_str,
api_url_prompt=api_url_prompt,
api_response_prompt=api_response_prompt,
verbose=True,
limit_to_domains=None
)
cl.user_session.set("api_chain", api_chain)
@cl.on_message
async def handle_message(message: cl.Message):
user_message = message.content
llm_chain = cl.user_session.get("llm_chain")
api_chain = cl.user_session.get("api_chain")
booking_pattern = r'\b[A-Z]{6}\d{6}\b'
base_url = "https://670dccd0073307b4ee447f2f.mockapi.io/daysoff/api/V1/booking"
if re.search(booking_pattern, user_message):
bestillingskode = re.search(booking_pattern, user_message).group(0)
question = f"Retrieve information for booking ID {base_url}?search={bestillingskode}"
response = await api_chain.acall(
{
"bestillingskode": bestillingskode,
"question": question
},
callbacks=[cl.AsyncLangchainCallbackHandler()])
elif any(keyword in user_message for keyword in ["firmahytteordning", "personvernspolicy",
"faq_ansatte", "faq_utleiere"]):
response = await api_chain.acall(user_message,
callbacks=[cl.AsyncLangchainCallbackHandler()])
else:
response = await llm_chain.acall(user_message, callbacks=[cl.AsyncLangchainCallbackHandler()])
response_key = "output" if "output" in response else "text"
await cl.Message(response.get(response_key, "")).send()
return message.content
|