File size: 5,445 Bytes
26776bf
 
3cf9bb8
26776bf
 
70ee030
f709b40
d7debf4
f709b40
 
 
 
 
 
3cf9bb8
f709b40
 
2248513
 
3cf9bb8
7305e7f
3cf9bb8
f709b40
30480ad
a699d4a
f74d64c
8f5e87a
 
7305e7f
3cf9bb8
 
 
 
861654a
f709b40
 
 
3cf9bb8
9479063
f74d64c
f709b40
 
 
 
c80f584
f709b40
 
 
 
a699d4a
f709b40
c80f584
f709b40
 
0dc2f2a
47d7912
9479063
8f5e87a
9479063
 
 
 
 
9dc4afe
f709b40
0dc2f2a
 
 
 
 
 
f709b40
 
4322daa
8f5e87a
 
 
 
 
 
4b98d45
8f5e87a
 
2248513
f709b40
8f5e87a
f709b40
 
 
f74d64c
f709b40
 
 
 
 
48c5ac5
f709b40
c80f584
f709b40
 
 
26776bf
0dc2f2a
 
f709b40
ea4e3ad
 
 
 
 
 
a699d4a
ea4e3ad
 
7839a66
eec23c4
db5a244
9dc4afe
db5a244
 
eec23c4
 
db5a244
 
 
eec23c4
 
3cf9bb8
9dc4afe
 
7305e7f
9dc4afe
7305e7f
 
 
9dc4afe
 
 
 
 
 
7305e7f
9dc4afe
 
 
 
 
 
 
 
 
ea4e3ad
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

# ===========================================
# ver01.01-5.workload-----app.py
# ===========================================

import asyncio
import os
import re
import time
import json

import chainlit as cl

from langchain import hub
from langchain_openai import OpenAI
from langchain.chains import LLMChain, APIChain
from langchain_core.prompts import PromptTemplate
from langchain.memory.buffer import ConversationBufferMemory

from api_docs_mck import api_docs_str 
from faq_data import help1, ansatte_faq_data, utleiere_faq_data
from personvernspolicy import help2, personvernspolicy_data

OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")

daysoff_assistant_template = """
You are a customer support assistant (โ€™kundeservice AI assistentโ€™) for Daysoff.no
By default, you respond in Norwegian language, using a warm, direct and professional tone. 
You can provide information associated with a given booking ID, and with {help1} in mind, you
can also answer frequently asked questions (FAQ) about DaysOff firmahytteordning for 
employees: {ansatte_faq_data} and for employers:{utleiere_faq_data}.
To understand how best to answer queries about privacy policy, 
refer to {help2} and {personvernspolicy_data}
Chat History: {chat_history}
Question: {question}
Answer:
"""
daysoff_assistant_prompt = PromptTemplate(
    input_variables=['chat_history', 'question', 'help', 'ansatte_faq_data', 'utleiere_faq_data','personvernspolicy_data', 'help2'],
    template=daysoff_assistant_template
)

api_url_template = """
Given the following API Documentation for Daysoff's official
booking information API: {api_docs}
Your task is to construct the most efficient API URL to answer
the user's question, ensuring the
call is optimized to include only the necessary information.
Question: {question}
API URL:
"""
api_url_prompt = PromptTemplate(input_variables=['api_docs', 'question'],
                                template=api_url_template)

api_response_template = """
With the API Documentation for Daysoff's official API: {api_docs} in mind, 
and user question: {question} in mind,
and given this API URL: {api_url} for querying,
and if the response from Daysoff's API is information associated with 
a booking ID (โ€™bestillingskodeโ€™): {api_response}, 
please directly address the user's question (in Norwegian) and focus on delivering the 
the response from Daysoff's API in a markdown table with clarity 
and conciseness. 
Response:
"""

api_response_prompt = PromptTemplate(
    input_variables=['api_docs', 'question', 'api_url', 'api_response'],
    template=api_response_template
)

@cl.on_chat_start
def setup_multiple_chains():

    llm = OpenAI(
        model='gpt-3.5-turbo-instruct',
        temperature=0.7, 
        openai_api_key=OPENAI_API_KEY,
        #max_tokens=512, 
        top_p=0.9,  
        frequency_penalty=0.5,
        presence_penalty=0.3   
    )
    
    conversation_memory = ConversationBufferMemory(memory_key="chat_history",
                                                   max_len=300,
                                                   return_messages=True,
                                                   )
    llm_chain = LLMChain(llm=llm,
                         prompt=daysoff_assistant_prompt,
                         memory=conversation_memory
                        )

    cl.user_session.set("llm_chain", llm_chain)

    api_chain = APIChain.from_llm_and_api_docs(
        llm=llm,
        api_docs=api_docs_str,
        api_url_prompt=api_url_prompt,
        api_response_prompt=api_response_prompt,
        verbose=True,
        limit_to_domains=None 
    )

    cl.user_session.set("api_chain", api_chain)

@cl.on_message
async def handle_message(message: cl.Message):
    user_message = message.content
    llm_chain = cl.user_session.get("llm_chain")
    api_chain = cl.user_session.get("api_chain")
    
    booking_pattern = r'\b[A-Z]{6}\d{6}\b' 
    base_url = "https://670dccd0073307b4ee447f2f.mockapi.io/daysoff/api/V1/booking"


    if re.search(booking_pattern, user_message):  
        bestillingskode = re.search(booking_pattern, user_message)#.group(0)  
        question = f"Retrieve information for booking ID {base_url}?search={bestillingskode}"
   
        response = await api_chain.acall(
            {
                "bestillingskode": bestillingskode,
                "question": question
              
            },
            callbacks=[cl.AsyncLangchainCallbackHandler()])
        
    else:

        help1 = help1 #()
        help2 = help2 #()()
        ansatte_faq_data = ansatte_faq_data
        utleiere_faq_data = utleiere_faq_data
        personvernspolicy_data = personvernspolicy_data

        # --psass required inputs to llm chain
        response = await llm_chain.acall(
            {
                #"chat_history": [],
                "question": user_message,
                "help": help1,
                "help2": help2,
                "ansatte_faq_data": ansatte_faq_data,
                "utleiere_faq_data": utleiere_faq_data,
                "personvernspolicy_data": personvernspolicy_data
            },
            callbacks=[cl.AsyncLangchainCallbackHandler()]
        )

        #response = await llm_chain.acall(user_message, callbacks=[cl.AsyncLangchainCallbackHandler()])

    response_key = "output" if "output" in response else "text"
    await cl.Message(response.get(response_key, "")).send()
    return message.content