File size: 6,876 Bytes
f79e226
 
f709b40
70ee030
f709b40
d7debf4
f709b40
 
 
 
8318d4c
 
77d14f7
f709b40
 
 
 
 
 
2248513
 
4322daa
 
20b2953
2248513
c80f584
2248513
f709b40
30480ad
2248513
20b2953
8f5e87a
19da83b
a699d4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f74d64c
8f5e87a
 
 
 
 
 
861654a
f709b40
 
 
7839a66
f74d64c
861654a
f74d64c
f709b40
 
 
 
c80f584
f709b40
 
 
 
a699d4a
f709b40
c80f584
f709b40
 
3dffd82
0dc2f2a
47d7912
8f5e87a
 
3dffd82
8f5e87a
a699d4a
 
3dffd82
335fa81
f709b40
0dc2f2a
 
 
 
 
 
f709b40
 
4322daa
8f5e87a
 
 
 
 
 
4b98d45
8f5e87a
 
 
7f4c041
4322daa
b9270a4
2248513
4322daa
 
 
 
 
 
 
 
30480ad
4322daa
8beb913
4322daa
2248513
 
 
 
 
 
f709b40
8f5e87a
f709b40
 
 
f74d64c
f709b40
 
 
 
 
48c5ac5
f709b40
c80f584
f709b40
 
 
71663a5
0dc2f2a
 
f709b40
a699d4a
7839a66
 
 
 
 
 
 
 
db8ef0b
7839a66
 
 
 
 
 
 
 
db8ef0b
7839a66
 
 
 
 
 
 
 
 
db8ef0b
7839a66
 
 
 
 
f709b40
8e535ba
 
0975922
 
 
8e535ba
 
 
7839a66
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
### title: 010125-daysoff-assistant-api
### file: app.py

import asyncio
import os
import re
import time
import json
import torch

import logging

from api_docs_mck import api_docs_str 

import chainlit as cl

from langchain import hub
from langchain.chains import LLMChain, APIChain
from langchain_core.prompts import PromptTemplate
from langchain.memory.buffer import ConversationBufferMemory

from langchain_openai import OpenAI

from langchain_community.llms import HuggingFaceHub
from langchain_huggingface import HuggingFacePipeline
from langchain_huggingface import HuggingFaceEndpoint
from langchain_core.callbacks.streaming_stdout import StreamingStdOutCallbackHandler

OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")
#HF_INFERENCE_ENDPOINT = 
#BOOKING_ID = re.compile(r'\b[A-Z]{6}\d{6}\b')
#HUGGINGFACEHUB_API_TOKEN = os.environ.get("HUGGINGFACEHUB_API_TOKEN")

BOOKING_KEYWORDS = [
    "booking",
    "bestillingsnummer",
    "bookingen",
    "ordrenummer",
    "reservation",
    "rezerwacji",
    "bookingreferanse",
    "rezerwacja",
    "booket",
    "reservation number",
    "bestilling",
    "order number",
    "booking ID",
    "identyfikacyjny płatności"
]

daysoff_assistant_template = """
You are a customer support assistant (’kundeservice AI assistent’) for Daysoff.no
By default, you respond in Norwegian language, using a warm, direct and professional tone. 
Your expertise is exclusively in in providing information related to a given booking ID (’bestillingsnummer’)  
and booking-related queries such as firmahytteordning and personvernspolicy. 
You do not provide information outside of this scope. If a question is not about booking or booking-related queries,
respond with, "Ønsker du annen informasjon, må du kontakte oss her på [email protected]"
Chat History: {chat_history}
Question: {question}
Answer:
"""

daysoff_assistant_prompt= PromptTemplate(
    input_variables=["chat_history", "question"],
    template=daysoff_assistant_template
)

api_url_template = """
Given the following API Documentation for Daysoff's official
booking information API: {api_docs}
Your task is to construct the most efficient API URL to answer
the user's question, ensuring the
call is optimized to include only the necessary information.
Question: {question}
API URL:
"""
api_url_prompt = PromptTemplate(input_variables=['api_docs', 'question'],
                                template=api_url_template)

# (..) If {question} contains an alphanumeric identifier consisting of 6 letters followed by 6 digits (e.g., DAGHNS116478)
api_response_template = """
With the API Documentation for Daysoff's official API: {api_docs} in mind, 
and  the specific user question: {question} in mind,
and given this API URL: {api_url} for querying,
here is the response from Daysoff's API: {api_response}.
Please provide an summary (in Norwegian) that directly addresses the user's question, 
omitting technical details like response format, and 
focusing on delivering the answer with clarity and conciseness, 
as if a human customer service agent is providing this information.
Summary:
"""

api_response_prompt = PromptTemplate(
    input_variables=['api_docs', 'question', 'api_url', 'api_response'],
    template=api_response_template
)

@cl.on_chat_start
def setup_multiple_chains():

    llm = OpenAI(
        model='gpt-3.5-turbo-instruct',
        temperature=0.7, 
        openai_api_key=OPENAI_API_KEY,
        #max_tokens=512, 
        top_p=0.9,  
        frequency_penalty=0.5,
        presence_penalty=0.3   
    )

    
    #llm = HuggingFaceEndpoint(
        #repo_id="google/gemma-2-2b", #"norallm/normistral-7b-warm-instruct", 
        #endpoint_url="http://localhost:8010/",
    
        #model="google/gemma-2-2b",
        #max_new_tokens=512,
        #top_k=10,
        #top_p=0.95,
        #typical_p=0.95,
        #temperature=0.7,
        #repetition_penalty=1.03,
        #huggingfacehub_api_token=HUGGINGFACEHUB_API_TOKEN,
        #task="text-generation"
    #)

    #llm = HuggingFacePipeline.from_model_id(
    #model_id="normistral-7b-warm-instruct",
    #task="text-generation",
    #pipeline_kwargs={"max_new_tokens": 10},
    #)
    
    conversation_memory = ConversationBufferMemory(memory_key="chat_history",
                                                   max_len=300,
                                                   return_messages=True,
                                                   )
    llm_chain = LLMChain(llm=llm,
                         prompt=daysoff_assistant_prompt,
                         memory=conversation_memory
                        )

    cl.user_session.set("llm_chain", llm_chain)

    api_chain = APIChain.from_llm_and_api_docs(
        llm=llm,
        api_docs=api_docs_str,
        api_url_prompt=api_url_prompt,
        api_response_prompt=api_response_prompt,
        verbose=True,
        limit_to_domains=None #["https://670dccd0073307b4ee447f2f.mockapi.io/daysoff/api/V1"]
    )

    cl.user_session.set("api_chain", api_chain)
    
import logging

@cl.on_message
async def handle_message(message: cl.Message):
    user_message = message.content
    llm_chain = cl.user_session.get("llm_chain")
    api_chain = cl.user_session.get("api_chain")

    # api_keywords = ["firmahytteordning", "personvernspolicy"]
    
    try:
        # --check message for booking ID
        if re.search(r'\b[A-Z]{6}\d{6}\b', user_message):  
            logging.debug(f"Booking ID detected in message: {user_message}")
            response = await api_chain.acall(user_message, callbacks=[cl.AsyncLangchainCallbackHandler()])

        # --check message for API keywords
        elif any(keyword in user_message for keyword in ["firmahytteordning", "personvernspolicy"]):   # any(keyword in user_message for keyword in api_keywords):
            logging.debug(f"API keyword detected in message: {user_message}")
            response = await api_chain.acall(user_message, callbacks=[cl.AsyncLangchainCallbackHandler()])

        else: 
            logging.debug("Triggering LLMChain for everything else.")
            response = await llm_chain.acall(user_message, callbacks=[cl.AsyncLangchainCallbackHandler()])

    except Exception as e:
        logging.error(f"Error in processing message: {str(e)}")
        response = {"output": "Jeg får desverre ikke hentet fram din informasjon akkurat nå."}

    response_key = "output" if "output" in response else "text"
    await cl.Message(response.get(response_key, "")).send()
    return message.content



#def is_booking_query(user_message):
        #match = re.search(r'\b[A-Z]{6}\d{6}\b', user_message)
        #return match is not None  # --works boolean
    #booked = is_booking_query(user_message)
    #if booked:
        #response = await api_chain.acall(user_message, callbacks=[cl.AsyncLangchainCallbackHandler()])
    # etc..