Spaces:
Sleeping
Sleeping
File size: 6,876 Bytes
f79e226 f709b40 70ee030 f709b40 d7debf4 f709b40 8318d4c 77d14f7 f709b40 2248513 4322daa 20b2953 2248513 c80f584 2248513 f709b40 30480ad 2248513 20b2953 8f5e87a 19da83b a699d4a f74d64c 8f5e87a 861654a f709b40 7839a66 f74d64c 861654a f74d64c f709b40 c80f584 f709b40 a699d4a f709b40 c80f584 f709b40 3dffd82 0dc2f2a 47d7912 8f5e87a 3dffd82 8f5e87a a699d4a 3dffd82 335fa81 f709b40 0dc2f2a f709b40 4322daa 8f5e87a 4b98d45 8f5e87a 7f4c041 4322daa b9270a4 2248513 4322daa 30480ad 4322daa 8beb913 4322daa 2248513 f709b40 8f5e87a f709b40 f74d64c f709b40 48c5ac5 f709b40 c80f584 f709b40 71663a5 0dc2f2a f709b40 a699d4a 7839a66 db8ef0b 7839a66 db8ef0b 7839a66 db8ef0b 7839a66 f709b40 8e535ba 0975922 8e535ba 7839a66 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
### title: 010125-daysoff-assistant-api
### file: app.py
import asyncio
import os
import re
import time
import json
import torch
import logging
from api_docs_mck import api_docs_str
import chainlit as cl
from langchain import hub
from langchain.chains import LLMChain, APIChain
from langchain_core.prompts import PromptTemplate
from langchain.memory.buffer import ConversationBufferMemory
from langchain_openai import OpenAI
from langchain_community.llms import HuggingFaceHub
from langchain_huggingface import HuggingFacePipeline
from langchain_huggingface import HuggingFaceEndpoint
from langchain_core.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")
#HF_INFERENCE_ENDPOINT =
#BOOKING_ID = re.compile(r'\b[A-Z]{6}\d{6}\b')
#HUGGINGFACEHUB_API_TOKEN = os.environ.get("HUGGINGFACEHUB_API_TOKEN")
BOOKING_KEYWORDS = [
"booking",
"bestillingsnummer",
"bookingen",
"ordrenummer",
"reservation",
"rezerwacji",
"bookingreferanse",
"rezerwacja",
"booket",
"reservation number",
"bestilling",
"order number",
"booking ID",
"identyfikacyjny płatności"
]
daysoff_assistant_template = """
You are a customer support assistant (’kundeservice AI assistent’) for Daysoff.no
By default, you respond in Norwegian language, using a warm, direct and professional tone.
Your expertise is exclusively in in providing information related to a given booking ID (’bestillingsnummer’)
and booking-related queries such as firmahytteordning and personvernspolicy.
You do not provide information outside of this scope. If a question is not about booking or booking-related queries,
respond with, "Ønsker du annen informasjon, må du kontakte oss her på [email protected]"
Chat History: {chat_history}
Question: {question}
Answer:
"""
daysoff_assistant_prompt= PromptTemplate(
input_variables=["chat_history", "question"],
template=daysoff_assistant_template
)
api_url_template = """
Given the following API Documentation for Daysoff's official
booking information API: {api_docs}
Your task is to construct the most efficient API URL to answer
the user's question, ensuring the
call is optimized to include only the necessary information.
Question: {question}
API URL:
"""
api_url_prompt = PromptTemplate(input_variables=['api_docs', 'question'],
template=api_url_template)
# (..) If {question} contains an alphanumeric identifier consisting of 6 letters followed by 6 digits (e.g., DAGHNS116478)
api_response_template = """
With the API Documentation for Daysoff's official API: {api_docs} in mind,
and the specific user question: {question} in mind,
and given this API URL: {api_url} for querying,
here is the response from Daysoff's API: {api_response}.
Please provide an summary (in Norwegian) that directly addresses the user's question,
omitting technical details like response format, and
focusing on delivering the answer with clarity and conciseness,
as if a human customer service agent is providing this information.
Summary:
"""
api_response_prompt = PromptTemplate(
input_variables=['api_docs', 'question', 'api_url', 'api_response'],
template=api_response_template
)
@cl.on_chat_start
def setup_multiple_chains():
llm = OpenAI(
model='gpt-3.5-turbo-instruct',
temperature=0.7,
openai_api_key=OPENAI_API_KEY,
#max_tokens=512,
top_p=0.9,
frequency_penalty=0.5,
presence_penalty=0.3
)
#llm = HuggingFaceEndpoint(
#repo_id="google/gemma-2-2b", #"norallm/normistral-7b-warm-instruct",
#endpoint_url="http://localhost:8010/",
#model="google/gemma-2-2b",
#max_new_tokens=512,
#top_k=10,
#top_p=0.95,
#typical_p=0.95,
#temperature=0.7,
#repetition_penalty=1.03,
#huggingfacehub_api_token=HUGGINGFACEHUB_API_TOKEN,
#task="text-generation"
#)
#llm = HuggingFacePipeline.from_model_id(
#model_id="normistral-7b-warm-instruct",
#task="text-generation",
#pipeline_kwargs={"max_new_tokens": 10},
#)
conversation_memory = ConversationBufferMemory(memory_key="chat_history",
max_len=300,
return_messages=True,
)
llm_chain = LLMChain(llm=llm,
prompt=daysoff_assistant_prompt,
memory=conversation_memory
)
cl.user_session.set("llm_chain", llm_chain)
api_chain = APIChain.from_llm_and_api_docs(
llm=llm,
api_docs=api_docs_str,
api_url_prompt=api_url_prompt,
api_response_prompt=api_response_prompt,
verbose=True,
limit_to_domains=None #["https://670dccd0073307b4ee447f2f.mockapi.io/daysoff/api/V1"]
)
cl.user_session.set("api_chain", api_chain)
import logging
@cl.on_message
async def handle_message(message: cl.Message):
user_message = message.content
llm_chain = cl.user_session.get("llm_chain")
api_chain = cl.user_session.get("api_chain")
# api_keywords = ["firmahytteordning", "personvernspolicy"]
try:
# --check message for booking ID
if re.search(r'\b[A-Z]{6}\d{6}\b', user_message):
logging.debug(f"Booking ID detected in message: {user_message}")
response = await api_chain.acall(user_message, callbacks=[cl.AsyncLangchainCallbackHandler()])
# --check message for API keywords
elif any(keyword in user_message for keyword in ["firmahytteordning", "personvernspolicy"]): # any(keyword in user_message for keyword in api_keywords):
logging.debug(f"API keyword detected in message: {user_message}")
response = await api_chain.acall(user_message, callbacks=[cl.AsyncLangchainCallbackHandler()])
else:
logging.debug("Triggering LLMChain for everything else.")
response = await llm_chain.acall(user_message, callbacks=[cl.AsyncLangchainCallbackHandler()])
except Exception as e:
logging.error(f"Error in processing message: {str(e)}")
response = {"output": "Jeg får desverre ikke hentet fram din informasjon akkurat nå."}
response_key = "output" if "output" in response else "text"
await cl.Message(response.get(response_key, "")).send()
return message.content
#def is_booking_query(user_message):
#match = re.search(r'\b[A-Z]{6}\d{6}\b', user_message)
#return match is not None # --works boolean
#booked = is_booking_query(user_message)
#if booked:
#response = await api_chain.acall(user_message, callbacks=[cl.AsyncLangchainCallbackHandler()])
# etc..
|