File size: 6,810 Bytes
26776bf
 
c797445
26776bf
 
70ee030
f709b40
d7debf4
f709b40
 
 
 
 
6038ecf
 
f709b40
3cf9bb8
f709b40
 
2248513
323cba4
 
 
3cf9bb8
c797445
 
a01015d
30480ad
a699d4a
ce90ecd
 
4ee4906
ce90ecd
 
 
 
9bf3ea7
ce90ecd
 
4ee4906
ce90ecd
f74d64c
3f8539b
1542c88
c797445
 
 
 
 
 
 
 
 
861654a
f709b40
 
 
3cf9bb8
ce90ecd
f74d64c
f709b40
 
 
 
c80f584
f709b40
 
 
 
a699d4a
f709b40
c80f584
f709b40
1542c88
0dc2f2a
6c97556
f3ec65b
8f5e87a
0b87614
 
 
 
 
6c97556
f709b40
0dc2f2a
 
 
 
 
9bf3ea7
f709b40
 
9bf3ea7
 
ce90ecd
9bf3ea7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce90ecd
9bf3ea7
 
 
 
 
 
 
 
 
 
2ae2e3b
9bf3ea7
 
 
 
 
 
 
 
 
 
 
 
ea4e3ad
 
 
9bf3ea7
ea4e3ad
 
9bf3ea7
 
1542c88
7839a66
9bf3ea7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177

# ===========================================
# ver01.01-5.workload-----app.py
# ===========================================

import asyncio
import os
import re
import time
import json

import chainlit as cl

from pydantic import BaseModel, ConfigDict

from langchain import hub
from langchain_openai import OpenAI
from langchain.chains import LLMChain, APIChain
from langchain_core.prompts import PromptTemplate
from langchain.memory.buffer import ConversationBufferMemory
from langchain.memory import ConversationTokenBufferMemory
from langchain.memory import ConversationSummaryMemory

from api_docs_mck import api_docs_str 
from personvernspolicy import instruction_text_priv, personvernspolicy_data
from frequently_asked_questions import instruction_text_faq, faq 

OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")

#class LLMChainConfig(BaseModel):
    #model_config = ConfigDict(extra='allow')

    #instruction_text_faq: str = instruction_text_faq
    #faq: dict = faq
    #instruction_text_priv: str = instruction_text_priv
    #personvernspolicy_data: dict = personvernspolicy_data

faq_combined = f"{instruction_text_faq}\n\n{faq}"
privacy_combined = f"{instruction_text_priv}\n\n{personvernspolicy_data}"     

# {faq_combined}, {privacy_combined}
daysoff_assistant_template = """
You are a customer support assistant (’kundeservice AI assistent’) for Daysoff. 
By default, you respond in Norwegian language, using a warm, direct, and professional tone. 
Your expertise is exclusively in retrieving booking information for a given booking id and answering
questions about firmahytteorning and personvernspolicy.
If a question does not involve booking information for a given booking id, ask: "Gjelder spørsmålet firmahytteordning?",
upon user confirmation, do your best to try to answer accordingly by referring to {instruction_text_faq} and {faq}.
If a query does not involve booking information for a given booking id or firmahytteordning, ask: "Gjelder spørsmålet personvernspolicy?"
upon user confirmation, do your best to provide a precise privacy-related response by referring to: {instruction_text_priv} and {personvernspolicy_data}.
If the query does not involve booking information for a given booking id, firmahytteordning or personvernspolicy,
respond with: "Jeg driver faktisk kun med henvendelser omkring bestillingsinformasjon og ofte-stilte-spørsmål i forbindelse 
med DaysOff firmahytteordning (inkludert personvernspolicyn). Gjelder det andre henvendelser, må du nok kontakte kundeservice på [email protected]😊"
Chat History: {chat_history}
Question: {question}
Answer:
"""
daysoff_assistant_prompt = PromptTemplate(
    input_variables=['chat_history', 'question],
    template=daysoff_assistant_template
)

api_url_template = """
Given the following API Documentation for Daysoff's official
booking information API: {api_docs}
Your task is to construct the most efficient API URL to answer
the user's question, ensuring the
call is optimized to include only the necessary information.
Question: {question}
API URL:
"""
api_url_prompt = PromptTemplate(input_variables=['api_docs', 'question'],
                                template=api_url_template)
    
api_response_template = """
With the API Documentation for Daysoff's official API: {api_docs} in mind,
and the specific user question: {question},
and given this API URL: {api_url} for querying,
and response from Daysoff's API: {api_response},
never refer the user to the API URL as your answer!
You should always provide a clear and concise summary (in Norwegian) of the booking information retrieved.
This way you directly address the user's question in a manner that reflects the professionalism and warmth 
of a human customer service agent.
Summary:
"""
api_response_prompt = PromptTemplate(
    input_variables=['api_docs', 'question', 'api_url', 'api_response'],
    template=api_response_template
)


@cl.on_chat_start
def setup_multiple_chains():

    llm = OpenAI(
        model='gpt-3.5-turbo',
        temperature=0.7, 
        openai_api_key=OPENAI_API_KEY,
        max_tokens=2048, 
        top_p=0.9,  
        frequency_penalty=0.1,
        presence_penalty=0.1   
    )

    # --ConversationBufferMemory
    conversation_memory = ConversationBufferMemory(memory_key="chat_history", 
                                                   max_len=30,  # --retains only the last 30 exchanges
                                                   return_messages=True,
    )
    
    # --ConversationTokenBufferMemory
    #conversation_memory = ConversationTokenBufferMemory(memory_key="chat_history",
                                                        #max_token_limit=1318,
                                                        #return_messages=True,
    #)

    # --ConversationSummaryMemory
    #conversation_memory = ConversationSummaryMemory(memory_key="chat_history",
                                                    #return_messages=True,
    #)

    llm_chain = LLMChain(
        llm=llm,
        prompt=daysoff_assistant_prompt,
        memory=conversation_memory
    )

    
#**LLMChainConfig(
                #instruction_text_faq=instruction_text_faq,
                #faq=faq,
                #instruction_text_priv=instruction_text_priv,
                #personvernspolicy_data=personvernspolicy_data
           #).model_dump()
            
    
    cl.user_session.set("llm_chain", llm_chain)

    api_chain = APIChain.from_llm_and_api_docs(
        llm=llm,
        api_docs=api_docs_str,
        api_url_prompt=api_url_prompt,
        api_response_prompt=api_response_prompt,
        verbose=True,
        limit_to_domains=None 
    )

    cl.user_session.set("api_chain", api_chain)

@cl.on_message
async def handle_message(message: cl.Message):
    user_message = message.content #.lower()
    llm_chain = cl.user_session.get("llm_chain")
    api_chain = cl.user_session.get("api_chain")
    
    booking_pattern = r'\b[A-Z]{6}\d{6}\b' 
    endpoint_url = "https://670dccd0073307b4ee447f2f.mockapi.io/daysoff/api/V1/booking"

    if re.search(booking_pattern, user_message):  
        bestillingskode = re.search(booking_pattern, user_message).group(0)  
        question = f"Retrieve information for booking ID {endpoint_url}?search={bestillingskode}"
   
        response = await api_chain.acall(
            {
                "bestillingskode": bestillingskode,
                "question": question
              
            },
            callbacks=[cl.AsyncLangchainCallbackHandler()])

    else:    
        response = await llm_chain.acall(user_message, callbacks=[cl.AsyncLangchainCallbackHandler()])

    response_key = "output" if "output" in response else "text"
    await cl.Message(response.get(response_key, "")).send()
    return message.content