File size: 6,535 Bytes
26776bf
 
3cf9bb8
26776bf
 
70ee030
f709b40
d7debf4
f709b40
 
 
 
 
323cba4
 
f709b40
3cf9bb8
f709b40
 
2248513
323cba4
 
 
2248513
3cf9bb8
323cba4
 
f709b40
30480ad
a699d4a
f74d64c
3f8539b
1542c88
0b87614
 
3f8539b
0b87614
 
861654a
f709b40
 
 
3cf9bb8
6c97556
f74d64c
f709b40
 
 
 
c80f584
f709b40
 
 
 
a699d4a
f709b40
c80f584
f709b40
 
1542c88
 
0dc2f2a
6c97556
f3ec65b
8f5e87a
0b87614
 
 
 
 
6c97556
f709b40
0dc2f2a
 
 
 
 
323cba4
 
 
 
 
 
 
 
 
 
 
 
 
f709b40
 
4322daa
8f5e87a
 
1250c6c
8f5e87a
323cba4
8f5e87a
d817107
 
8f5e87a
323cba4
 
072cbdb
 
 
 
2248513
323cba4
072cbdb
841c5f4
 
072cbdb
323cba4
 
 
4768284
 
323cba4
f709b40
f74d64c
f709b40
 
 
 
 
48c5ac5
f709b40
c80f584
f709b40
 
 
26776bf
0dc2f2a
 
f709b40
ea4e3ad
 
 
f3ec65b
ea4e3ad
 
a699d4a
ea4e3ad
1542c88
7839a66
db5a244
45b92d7
1542c88
db5a244
eec23c4
 
db5a244
 
 
eec23c4
 
52b624f
6c97556
 
ea4e3ad
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

# ===========================================
# ver01.01-5.workload-----app.py
# ===========================================

import asyncio
import os
import re
import time
import json

import chainlit as cl

#from tiktoken import encoding_for_model

from langchain import hub
from langchain_openai import OpenAI
from langchain.chains import LLMChain, APIChain
from langchain_core.prompts import PromptTemplate
from langchain.memory.buffer import ConversationBufferMemory
from langchain.memory import ConversationTokenBufferMemory
from langchain.memory import ConversationSummaryMemory


from api_docs_mck import api_docs_str 
#from faq_data import ansatte_faq_data, utleiere_faq_data
#from personvernspolicy import personvernspolicy_data

OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")

daysoff_assistant_template = """
You are a customer support assistant (โ€™kundeservice AI assistentโ€™) for Daysoff. 
By default, you respond in Norwegian language, using a warm, direct, and professional tone. 
Your expertise is exclusively in retrieving booking information for a given booking ID assistance related to
to this.
You do not provide information outside of this scope. If a question is not about this topic, respond with 
"Ooops da, jeg driver faktisk kun med henvendelser omkring bestillingsinformasjon. Gjelder det andre henvendelser, 
ksรฅ mรฅ du nok kontakte kundeservice pรฅ [email protected]๐Ÿ˜Š"
Chat History: {chat_history}
Question: {question}
Answer:
"""
daysoff_assistant_prompt = PromptTemplate(
    input_variables=['chat_history', 'question'],
    template=daysoff_assistant_template
)

api_url_template = """
Given the following API Documentation for Daysoff's official
booking information API: {api_docs}
Your task is to construct the most efficient API URL to answer
the user's question, ensuring the
call is optimized to include only the necessary information.
Question: {question}
API URL:
"""
api_url_prompt = PromptTemplate(input_variables=['api_docs', 'question'],
                                template=api_url_template)

# If the response includes booking information, provide the information verbatim (do not summarize it.)
    
api_response_template = """
With the API Documentation for Daysoff's official API: {api_docs} in mind,
and the specific user question: {question},
and given this API URL: {api_url} for querying,
and response from Daysoff's API: {api_response},
never refer the user to the API URL as your answer!
You should always provide a clear and concise summary (in Norwegian) of the booking information retrieved.
This way you directly address the user's question in a manner that reflects the professionalism and warmth 
of a human customer service agent.
Summary:
"""
api_response_prompt = PromptTemplate(
    input_variables=['api_docs', 'question', 'api_url', 'api_response'],
    template=api_response_template
)

# ---------------------------------------------------------------------------------------------------------
# 100 tokens โ‰ƒ 75 words
# system prompt(s), total = 330 tokens
# average api response = 250-300 tokens (current)
# user input "reserved" = 400 tokens (300 words max. /English; Polish, Norwegian {..}?@tiktokenizer), could be reduc3d to 140 tokens โ‰ƒ 105 words
# model output (max_tokens) = 2048

# ConversationBufferMemory = maintains raw chat history; crucial for "nuanced" follow-ups (e.g. "nuanced" ~ for non-English inputs)
# ConversationTokenBufferMemory (max_token_limit) = 1318 (gives space in chat_history for approximately 10-15 exchanges, assuming ~100 tokens/exchange) 
# ConversationSummaryMemory = scalable approach, especially useful for extended or complex interactions, caveat: loss of granular context
# ---------------------------------------------------------------------------------------------------------


@cl.on_chat_start
def setup_multiple_chains():

    llm = OpenAI(
        model='gpt-3.5-turbo-instruct',
        temperature=0.7, 
        openai_api_key=OPENAI_API_KEY,
        max_tokens=2048, 
        top_p=0.9,  
        frequency_penalty=0.1,
        presence_penalty=0.1   
    )

    # --ConversationBufferMemory
    conversation_memory = ConversationBufferMemory(memory_key="chat_history", 
                                                   max_len=30,  # --retains only the last 30 exchanges
                                                   return_messages=True,
    )
    
    # --ConversationTokenBufferMemory
    #conversation_memory = ConversationTokenBufferMemory(memory_key="chat_history",
                                                        #max_token_limit=1318,
                                                        #return_messages=True,
    #)

    # --ConversationSummaryMemory
    #conversation_memory = ConversationSummaryMemory(memory_key="chat_history",
                                                    #return_messages=True,
    #)
                                                        
    llm_chain = LLMChain(llm=llm,
                         prompt=daysoff_assistant_prompt,
                         memory=conversation_memory
                        )

    cl.user_session.set("llm_chain", llm_chain)

    api_chain = APIChain.from_llm_and_api_docs(
        llm=llm,
        api_docs=api_docs_str,
        api_url_prompt=api_url_prompt,
        api_response_prompt=api_response_prompt,
        verbose=True,
        limit_to_domains=None 
    )

    cl.user_session.set("api_chain", api_chain)

@cl.on_message
async def handle_message(message: cl.Message):
    user_message = message.content #.lower()
    llm_chain = cl.user_session.get("llm_chain")
    api_chain = cl.user_session.get("api_chain")
    
    booking_pattern = r'\b[A-Z]{6}\d{6}\b' 
    endpoint_url = "https://670dccd0073307b4ee447f2f.mockapi.io/daysoff/api/V1/booking"

    if re.search(booking_pattern, user_message):  
        bestillingskode = re.search(booking_pattern, user_message).group(0)  
        question = f"Retrieve information for booking ID {endpoint_url}?search={bestillingskode}"
   
        response = await api_chain.acall(
            {
                "bestillingskode": bestillingskode,
                "question": question
              
            },
            callbacks=[cl.AsyncLangchainCallbackHandler()])

    else:    
        response = await llm_chain.acall(user_message, callbacks=[cl.AsyncLangchainCallbackHandler()])

    response_key = "output" if "output" in response else "text"
    await cl.Message(response.get(response_key, "")).send()
    return message.content