Spaces:
Sleeping
Sleeping
File size: 6,535 Bytes
26776bf 3cf9bb8 26776bf 70ee030 f709b40 d7debf4 f709b40 323cba4 f709b40 3cf9bb8 f709b40 2248513 323cba4 2248513 3cf9bb8 323cba4 f709b40 30480ad a699d4a f74d64c 3f8539b 1542c88 0b87614 3f8539b 0b87614 861654a f709b40 3cf9bb8 6c97556 f74d64c f709b40 c80f584 f709b40 a699d4a f709b40 c80f584 f709b40 1542c88 0dc2f2a 6c97556 f3ec65b 8f5e87a 0b87614 6c97556 f709b40 0dc2f2a 323cba4 f709b40 4322daa 8f5e87a 1250c6c 8f5e87a 323cba4 8f5e87a d817107 8f5e87a 323cba4 072cbdb 2248513 323cba4 072cbdb 841c5f4 072cbdb 323cba4 4768284 323cba4 f709b40 f74d64c f709b40 48c5ac5 f709b40 c80f584 f709b40 26776bf 0dc2f2a f709b40 ea4e3ad f3ec65b ea4e3ad a699d4a ea4e3ad 1542c88 7839a66 db5a244 45b92d7 1542c88 db5a244 eec23c4 db5a244 eec23c4 52b624f 6c97556 ea4e3ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
# ===========================================
# ver01.01-5.workload-----app.py
# ===========================================
import asyncio
import os
import re
import time
import json
import chainlit as cl
#from tiktoken import encoding_for_model
from langchain import hub
from langchain_openai import OpenAI
from langchain.chains import LLMChain, APIChain
from langchain_core.prompts import PromptTemplate
from langchain.memory.buffer import ConversationBufferMemory
from langchain.memory import ConversationTokenBufferMemory
from langchain.memory import ConversationSummaryMemory
from api_docs_mck import api_docs_str
#from faq_data import ansatte_faq_data, utleiere_faq_data
#from personvernspolicy import personvernspolicy_data
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")
daysoff_assistant_template = """
You are a customer support assistant (โkundeservice AI assistentโ) for Daysoff.
By default, you respond in Norwegian language, using a warm, direct, and professional tone.
Your expertise is exclusively in retrieving booking information for a given booking ID assistance related to
to this.
You do not provide information outside of this scope. If a question is not about this topic, respond with
"Ooops da, jeg driver faktisk kun med henvendelser omkring bestillingsinformasjon. Gjelder det andre henvendelser,
ksรฅ mรฅ du nok kontakte kundeservice pรฅ [email protected]๐"
Chat History: {chat_history}
Question: {question}
Answer:
"""
daysoff_assistant_prompt = PromptTemplate(
input_variables=['chat_history', 'question'],
template=daysoff_assistant_template
)
api_url_template = """
Given the following API Documentation for Daysoff's official
booking information API: {api_docs}
Your task is to construct the most efficient API URL to answer
the user's question, ensuring the
call is optimized to include only the necessary information.
Question: {question}
API URL:
"""
api_url_prompt = PromptTemplate(input_variables=['api_docs', 'question'],
template=api_url_template)
# If the response includes booking information, provide the information verbatim (do not summarize it.)
api_response_template = """
With the API Documentation for Daysoff's official API: {api_docs} in mind,
and the specific user question: {question},
and given this API URL: {api_url} for querying,
and response from Daysoff's API: {api_response},
never refer the user to the API URL as your answer!
You should always provide a clear and concise summary (in Norwegian) of the booking information retrieved.
This way you directly address the user's question in a manner that reflects the professionalism and warmth
of a human customer service agent.
Summary:
"""
api_response_prompt = PromptTemplate(
input_variables=['api_docs', 'question', 'api_url', 'api_response'],
template=api_response_template
)
# ---------------------------------------------------------------------------------------------------------
# 100 tokens โ 75 words
# system prompt(s), total = 330 tokens
# average api response = 250-300 tokens (current)
# user input "reserved" = 400 tokens (300 words max. /English; Polish, Norwegian {..}?@tiktokenizer), could be reduc3d to 140 tokens โ 105 words
# model output (max_tokens) = 2048
# ConversationBufferMemory = maintains raw chat history; crucial for "nuanced" follow-ups (e.g. "nuanced" ~ for non-English inputs)
# ConversationTokenBufferMemory (max_token_limit) = 1318 (gives space in chat_history for approximately 10-15 exchanges, assuming ~100 tokens/exchange)
# ConversationSummaryMemory = scalable approach, especially useful for extended or complex interactions, caveat: loss of granular context
# ---------------------------------------------------------------------------------------------------------
@cl.on_chat_start
def setup_multiple_chains():
llm = OpenAI(
model='gpt-3.5-turbo-instruct',
temperature=0.7,
openai_api_key=OPENAI_API_KEY,
max_tokens=2048,
top_p=0.9,
frequency_penalty=0.1,
presence_penalty=0.1
)
# --ConversationBufferMemory
conversation_memory = ConversationBufferMemory(memory_key="chat_history",
max_len=30, # --retains only the last 30 exchanges
return_messages=True,
)
# --ConversationTokenBufferMemory
#conversation_memory = ConversationTokenBufferMemory(memory_key="chat_history",
#max_token_limit=1318,
#return_messages=True,
#)
# --ConversationSummaryMemory
#conversation_memory = ConversationSummaryMemory(memory_key="chat_history",
#return_messages=True,
#)
llm_chain = LLMChain(llm=llm,
prompt=daysoff_assistant_prompt,
memory=conversation_memory
)
cl.user_session.set("llm_chain", llm_chain)
api_chain = APIChain.from_llm_and_api_docs(
llm=llm,
api_docs=api_docs_str,
api_url_prompt=api_url_prompt,
api_response_prompt=api_response_prompt,
verbose=True,
limit_to_domains=None
)
cl.user_session.set("api_chain", api_chain)
@cl.on_message
async def handle_message(message: cl.Message):
user_message = message.content #.lower()
llm_chain = cl.user_session.get("llm_chain")
api_chain = cl.user_session.get("api_chain")
booking_pattern = r'\b[A-Z]{6}\d{6}\b'
endpoint_url = "https://670dccd0073307b4ee447f2f.mockapi.io/daysoff/api/V1/booking"
if re.search(booking_pattern, user_message):
bestillingskode = re.search(booking_pattern, user_message).group(0)
question = f"Retrieve information for booking ID {endpoint_url}?search={bestillingskode}"
response = await api_chain.acall(
{
"bestillingskode": bestillingskode,
"question": question
},
callbacks=[cl.AsyncLangchainCallbackHandler()])
else:
response = await llm_chain.acall(user_message, callbacks=[cl.AsyncLangchainCallbackHandler()])
response_key = "output" if "output" in response else "text"
await cl.Message(response.get(response_key, "")).send()
return message.content
|