Spaces:
Sleeping
Sleeping
# =================================================== | |
# "the-very-latest-latest-POST-it"-----app.py | |
# =================================================== | |
import asyncio | |
import os | |
import re | |
import time | |
import json | |
import chainlit as cl | |
from dotenv import load_dotenv | |
from pydantic import BaseModel, PrivateAttr | |
from langchain import hub | |
from langchain_openai import OpenAI | |
from tiktoken import encoding_for_model | |
from langchain.chains import LLMChain #APIChain | |
from langchain_core.prompts import PromptTemplate | |
from langchain_community.tools.requests.tool import RequestsPostTool | |
from langchain_community.utilities.requests import TextRequestsWrapper | |
from langchain.memory.buffer import ConversationBufferMemory | |
from langchain.memory import ConversationTokenBufferMemory | |
from langchain.memory import ConversationSummaryMemory | |
from api_docs import api_docs_str | |
load_dotenv() | |
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY") | |
auth_token = os.getenv("DAYSOFF_API_TOKEN") | |
class EnhancedRequestsPostTool(RequestsPostTool, BaseModel): | |
api_docs: str = api_docs_str | |
# --PrivateAttr@dynanmc init attrbts | |
_url_chain: LLMChain = PrivateAttr() | |
_response_chain: LLMChain = PrivateAttr() | |
def __init__(self, requests_wrapper, llm, api_docs_str, api_url_prompt, api_response_prompt): | |
super().__init__(requests_wrapper=requests_wrapper, allow_dangerous_requests=True) | |
object.__setattr__(self, 'api_docs', api_docs_str) # self.api_docs = api_docs_str | |
object.__setattr__(self, 'url_chain', LLMChain(llm=llm, prompt=api_url_prompt)) # --dynanmc init1 | |
object.__setattr__(self, 'response_chain', LLMChain(llm=llm, prompt=api_response_prompt)) # --dynanmc init2 | |
async def ainvoke(self, input_data, callbacks=None): | |
# -- create API URL | |
url_response = await self.url_chain.ainvoke({ | |
"api_docs": self.api_docs, | |
"question": input_data.get("question") | |
}) | |
api_response = await super().ainvoke(input_data, callbacks) # --make POST request | |
# --form(at) response/:response_chain | |
formatted_response = await self.response_chain.ainvoke({ | |
"api_docs": self.api_docs, | |
#"question": input_data.get("question"), | |
#"api_url": url_response.get("text"), | |
"api_response": api_response | |
}) | |
return formatted_response | |
daysoff_assistant_template = """ | |
#You are a customer support assistant (โkundeservice AI assistentโ) for Daysoff. | |
#By default, you respond in Norwegian language, using a warm, direct, and professional tone. | |
Your expertise is exclusively in retrieving booking information for a given booking ID assistance related to | |
to this. | |
You do not provide information outside of this scope. If a question is not about this topic, respond with | |
"Jeg driver faktisk kun med henvendelser omkring bestillingsinformasjon. Gjelder det andre henvendelser | |
mรฅ du nok kontakte kundeservice pรฅ [email protected]๐" | |
Chat History: {chat_history} | |
Question: {question} | |
Answer: | |
""" | |
daysoff_assistant_prompt = PromptTemplate( | |
input_variables=['chat_history', 'question'], | |
template=daysoff_assistant_template | |
) | |
api_url_template = """ | |
Given the following API Documentation for Daysoff's official | |
booking information API: {api_docs} | |
Your task is to construct the most efficient API URL to answer | |
the user's question, ensuring the | |
call is optimized to include only the necessary information. | |
Question: {question} | |
API URL: | |
""" | |
api_url_prompt = PromptTemplate(input_variables=['api_docs', 'question'], | |
template=api_url_template) | |
api_response_template = """ | |
With the API Documentation for Daysoff's official API: {api_docs} in mind, | |
and the specific user question: {question}, | |
and given this API URL: {api_url} for querying, | |
and response from Daysoff's API: {api_response}, | |
never refer the user to the API URL as your answer! | |
You should always provide a clear and concise summary (in Norwegian) of the booking information retrieved. | |
This way you directly address the user's question in a manner that reflects the professionalism and warmth | |
of a human customer service agent. | |
Summary: | |
""" | |
api_response_prompt = PromptTemplate( | |
input_variables=['api_docs', 'question', 'api_url', 'api_response'], | |
template=api_response_template | |
) | |
def setup_multiple_chains(): | |
llm = OpenAI( | |
model='gpt-3.5-turbo-instruct', | |
temperature=0.7, | |
openai_api_key=OPENAI_API_KEY, | |
max_tokens=2048, | |
top_p=0.9, | |
frequency_penalty=0.1, | |
presence_penalty=0.1 | |
) | |
conversation_memory = ConversationBufferMemory(memory_key="chat_history", | |
max_len=30, | |
return_messages=True, | |
) | |
llm_chain = LLMChain( | |
llm=llm, | |
prompt=daysoff_assistant_prompt, | |
memory=conversation_memory, | |
) | |
requests_wrapper = TextRequestsWrapper( | |
headers={ | |
"Authorization": f"Bearer <auth_token>", | |
"Content-Type": "application/json" | |
} | |
) | |
post_tool = EnhancedRequestsPostTool( | |
requests_wrapper=requests_wrapper, | |
llm=llm, | |
api_docs_str=api_docs_str, | |
api_url_prompt=api_url_prompt, | |
api_response_prompt=api_response_prompt | |
) | |
cl.user_session.set("llm_chain", llm_chain) | |
cl.user_session.set("post_tool", post_tool) | |
async def handle_message(message: cl.Message): | |
user_message = message.content | |
llm_chain = cl.user_session.get("llm_chain") | |
post_tool = cl.user_session.get("post_tool") | |
booking_pattern = r'\b[A-Z]{6}\d{6}\b' | |
endpoint_url = "https://aivisions.no/data/daysoff/api/v1/booking/" | |
match = re.search(booking_pattern, user_message) | |
if match: | |
bestillingskode = match.group() | |
post_data = { | |
"url": endpoint_url, | |
"body": { | |
"booking_id": bestillingskode | |
} | |
} | |
response = await post_tool.ainvoke( | |
json.dumps(post_data), | |
[cl.AsyncLangchainCallbackHandler()] # config={"callbacks": | |
) | |
# --degug! | |
print(f"Raw response: {response}") | |
if response: | |
try: | |
booking_data = json.loads(response.get("output", "{}")) | |
table = "| Field | Information |\n|---|---|\n" | |
table = f""" | |
| Field | Value | | |
|-------------|--------------------| | |
| Booking ID | {booking_data.get('booking_id', 'N/A')} | | |
| Name | {booking_data.get('full_name', 'N/A')} | | |
| Amount | {booking_data.get('amount', 'N/A')} kr | | |
| Check-in | {booking_data.get('checkin', 'N/A')} | | |
| Check-out | {booking_data.get('checkout', 'N/A')} | | |
| Address | {booking_data.get('address', 'N/A')} | | |
| User ID | {booking_data.get('user_id', 'N/A')} | | |
| Info | {booking_data.get('infotext', 'N/A')} | | |
| Included | {booking_data.get('included', 'N/A')} | | |
""" | |
await cl.Message(content=table).send() | |
except Exception as e: | |
error_msg = f"Error: Could not parse the booking information. Details: {str(e)}" | |
await cl.Message(error_msg).send() | |
else: | |
response = await llm_chain.ainvoke( | |
user_message, # {"chat_history": "", "question": user_message} | |
) | |
await cl.Message(content=response).send() | |
response_key = "output" if "output" in response else "text" | |
await cl.Message(response.get(response_key, "")).send() | |
return message.content | |