Spaces:
Sleeping
Sleeping
# =========================================== | |
# ver01.01-5.workload-----app.py | |
# =========================================== | |
import asyncio | |
import os | |
import re | |
import time | |
import json | |
import chainlit as cl | |
from langchain import hub | |
from langchain_openai import OpenAI | |
from langchain.chains import LLMChain, APIChain | |
from langchain_core.prompts import PromptTemplate | |
from langchain.memory.buffer import ConversationBufferMemory | |
from api_docs_mck import api_docs_str | |
from faq_data import help1, ansatte_faq_data, utleiere_faq_data | |
from personvernspolicy import help2, personvernspolicy_data | |
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY") | |
daysoff_assistant_template = """ | |
You are a customer support assistant (โkundeservice AI assistentโ) for Daysoff.no | |
By default, you respond in Norwegian language, using a warm, direct and professional tone. | |
You can provide information associated with a given booking ID, and with {help1} in mind, you | |
can also answer frequently asked questions (FAQ) about DaysOff firmahytteordning for | |
employees: {ansatte_faq_data} and for employers:{utleiere_faq_data}. | |
To understand how best to answer queries about privacy policy, | |
refer to {help2} and {personvernspolicy_data} | |
Chat History: {chat_history} | |
Question: {question} | |
Answer: | |
""" | |
daysoff_assistant_prompt = PromptTemplate( | |
input_variables=['chat_history', 'question', 'help', 'ansatte_faq_data', 'utleiere_faq_data','personvernspolicy_data', 'help2'], | |
template=daysoff_assistant_template | |
) | |
api_url_template = """ | |
Given the following API Documentation for Daysoff's official | |
booking information API: {api_docs} | |
Your task is to construct the most efficient API URL to answer | |
the user's question, ensuring the | |
call is optimized to include only the necessary information. | |
Question: {question} | |
API URL: | |
""" | |
api_url_prompt = PromptTemplate(input_variables=['api_docs', 'question'], | |
template=api_url_template) | |
api_response_template = """ | |
With the API Documentation for Daysoff's official API: {api_docs} in mind, | |
and user question: {question} in mind, | |
and given this API URL: {api_url} for querying, | |
and if the response from Daysoff's API is information associated with | |
a booking ID (โbestillingskodeโ): {api_response}, | |
please directly address the user's question (in Norwegian) and focus on delivering the | |
the response from Daysoff's API in a markdown table with clarity | |
and conciseness. | |
Response: | |
""" | |
api_response_prompt = PromptTemplate( | |
input_variables=['api_docs', 'question', 'api_url', 'api_response'], | |
template=api_response_template | |
) | |
def setup_multiple_chains(): | |
llm = OpenAI( | |
model='gpt-3.5-turbo-instruct', | |
temperature=0.7, | |
openai_api_key=OPENAI_API_KEY, | |
#max_tokens=512, | |
top_p=0.9, | |
frequency_penalty=0.5, | |
presence_penalty=0.3 | |
) | |
conversation_memory = ConversationBufferMemory(memory_key="chat_history", | |
max_len=300, | |
return_messages=True, | |
) | |
llm_chain = LLMChain(llm=llm, | |
prompt=daysoff_assistant_prompt, | |
memory=conversation_memory | |
) | |
cl.user_session.set("llm_chain", llm_chain) | |
api_chain = APIChain.from_llm_and_api_docs( | |
llm=llm, | |
api_docs=api_docs_str, | |
api_url_prompt=api_url_prompt, | |
api_response_prompt=api_response_prompt, | |
verbose=True, | |
limit_to_domains=None | |
) | |
cl.user_session.set("api_chain", api_chain) | |
async def handle_message(message: cl.Message): | |
user_message = message.content | |
llm_chain = cl.user_session.get("llm_chain") | |
api_chain = cl.user_session.get("api_chain") | |
booking_pattern = r'\b[A-Z]{6}\d{6}\b' | |
base_url = "https://670dccd0073307b4ee447f2f.mockapi.io/daysoff/api/V1/booking" | |
if re.search(booking_pattern, user_message): | |
bestillingskode = re.search(booking_pattern, user_message)#.group(0) | |
question = f"Retrieve information for booking ID {base_url}?search={bestillingskode}" | |
response = await api_chain.acall( | |
{ | |
"bestillingskode": bestillingskode, | |
"question": question | |
}, | |
callbacks=[cl.AsyncLangchainCallbackHandler()]) | |
else: | |
help1 = help1 #() | |
help2 = help2 #()() | |
ansatte_faq_data = ansatte_faq_data | |
utleiere_faq_data = utleiere_faq_data | |
personvernspolicy_data = personvernspolicy_data | |
# --psass required inputs to llm chain | |
response = await llm_chain.acall( | |
{ | |
#"chat_history": [], | |
"question": user_message, | |
"help": help1, | |
"help2": help2, | |
"ansatte_faq_data": ansatte_faq_data, | |
"utleiere_faq_data": utleiere_faq_data, | |
"personvernspolicy_data": personvernspolicy_data | |
}, | |
callbacks=[cl.AsyncLangchainCallbackHandler()] | |
) | |
#response = await llm_chain.acall(user_message, callbacks=[cl.AsyncLangchainCallbackHandler()]) | |
response_key = "output" if "output" in response else "text" | |
await cl.Message(response.get(response_key, "")).send() | |
return message.content | |