Spaces:
Sleeping
Sleeping
# =========================================== | |
# ver01.01-5.workload-----app.py | |
# =========================================== | |
import asyncio | |
import os | |
import re | |
import time | |
import json | |
import chainlit as cl | |
#from tiktoken import encoding_for_model | |
from langchain import hub | |
from langchain_openai import OpenAI | |
from langchain.chains import LLMChain, APIChain | |
from langchain_core.prompts import PromptTemplate | |
from langchain.memory.buffer import ConversationBufferMemory | |
from langchain.memory import ConversationTokenBufferMemory | |
from langchain.memory import ConversationSummaryMemory | |
from api_docs_mck import api_docs_str | |
#from faq_data import ansatte_faq_data, utleiere_faq_data | |
#from personvernspolicy import personvernspolicy_data | |
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY") | |
daysoff_assistant_template = """ | |
You are a customer support assistant (โkundeservice AI assistentโ) for Daysoff. | |
By default, you respond in Norwegian language, using a warm, direct, and professional tone. | |
Your expertise is exclusively in retrieving booking information for a given booking ID assistance related to | |
to this. | |
You do not provide information outside of this scope. If a question is not about this topic, respond with | |
"Ooops da, jeg driver faktisk kun med henvendelser omkring bestillingsinformasjon. Gjelder det andre henvendelser, | |
ksรฅ mรฅ du nok kontakte kundeservice pรฅ [email protected]๐" | |
Chat History: {chat_history} | |
Question: {question} | |
Answer: | |
""" | |
daysoff_assistant_prompt = PromptTemplate( | |
input_variables=['chat_history', 'question'], | |
template=daysoff_assistant_template | |
) | |
api_url_template = """ | |
Given the following API Documentation for Daysoff's official | |
booking information API: {api_docs} | |
Your task is to construct the most efficient API URL to answer | |
the user's question, ensuring the | |
call is optimized to include only the necessary information. | |
Question: {question} | |
API URL: | |
""" | |
api_url_prompt = PromptTemplate(input_variables=['api_docs', 'question'], | |
template=api_url_template) | |
# If the response includes booking information, provide the information verbatim (do not summarize it.) | |
api_response_template = """ | |
With the API Documentation for Daysoff's official API: {api_docs} in mind, | |
and the specific user question: {question}, | |
and given this API URL: {api_url} for querying, | |
and response from Daysoff's API: {api_response}, | |
never refer the user to the API URL as your answer! | |
You should always provide a clear and concise summary (in Norwegian) of the booking information retrieved. | |
This way you directly address the user's question in a manner that reflects the professionalism and warmth | |
of a human customer service agent. | |
Summary: | |
""" | |
api_response_prompt = PromptTemplate( | |
input_variables=['api_docs', 'question', 'api_url', 'api_response'], | |
template=api_response_template | |
) | |
# --------------------------------------------------------------------------------------------------------- | |
# 100 tokens โ 75 words | |
# system prompt(s), total = 330 tokens | |
# average api response = 250-300 tokens (current) | |
# user input "reserved" = 400 tokens (300 words max. /English; Polish, Norwegian {..}?@tiktokenizer), could be reduc3d to 140 tokens โ 105 words | |
# model output (max_tokens) = 2048 | |
# ConversationBufferMemory = maintains raw chat history; crucial for "nuanced" follow-ups (e.g. "nuanced" ~ for non-English inputs) | |
# ConversationTokenBufferMemory (max_token_limit) = 1318 (gives space in chat_history for approximately 10-15 exchanges, assuming ~100 tokens/exchange) | |
# ConversationSummaryMemory = scalable approach, especially useful for extended or complex interactions, caveat: loss of granular context | |
# --------------------------------------------------------------------------------------------------------- | |
def setup_multiple_chains(): | |
llm = OpenAI( | |
model='gpt-3.5-turbo-instruct', | |
temperature=0.7, | |
openai_api_key=OPENAI_API_KEY, | |
max_tokens=2048, | |
top_p=0.9, | |
frequency_penalty=0.1, | |
presence_penalty=0.1 | |
) | |
# --ConversationBufferMemory | |
conversation_memory = ConversationBufferMemory(memory_key="chat_history", | |
max_len=30, # --retains only the last 30 exchanges | |
return_messages=True, | |
) | |
# --ConversationTokenBufferMemory | |
#conversation_memory = ConversationTokenBufferMemory(memory_key="chat_history", | |
#max_token_limit=1318, | |
#return_messages=True, | |
#) | |
# --ConversationSummaryMemory | |
#conversation_memory = ConversationSummaryMemory(memory_key="chat_history", | |
#return_messages=True, | |
#) | |
llm_chain = LLMChain(llm=llm, | |
prompt=daysoff_assistant_prompt, | |
memory=conversation_memory | |
) | |
cl.user_session.set("llm_chain", llm_chain) | |
api_chain = APIChain.from_llm_and_api_docs( | |
llm=llm, | |
api_docs=api_docs_str, | |
api_url_prompt=api_url_prompt, | |
api_response_prompt=api_response_prompt, | |
verbose=True, | |
limit_to_domains=None | |
) | |
cl.user_session.set("api_chain", api_chain) | |
async def handle_message(message: cl.Message): | |
user_message = message.content #.lower() | |
llm_chain = cl.user_session.get("llm_chain") | |
api_chain = cl.user_session.get("api_chain") | |
booking_pattern = r'\b[A-Z]{6}\d{6}\b' | |
endpoint_url = "https://670dccd0073307b4ee447f2f.mockapi.io/daysoff/api/V1/booking" | |
if re.search(booking_pattern, user_message): | |
bestillingskode = re.search(booking_pattern, user_message).group(0) | |
question = f"Retrieve information for booking ID {endpoint_url}?search={bestillingskode}" | |
response = await api_chain.acall( | |
{ | |
"bestillingskode": bestillingskode, | |
"question": question | |
}, | |
callbacks=[cl.AsyncLangchainCallbackHandler()]) | |
else: | |
response = await llm_chain.acall(user_message, callbacks=[cl.AsyncLangchainCallbackHandler()]) | |
response_key = "output" if "output" in response else "text" | |
await cl.Message(response.get(response_key, "")).send() | |
return message.content | |