camparchimedes's picture
Update app.py
7839a66 verified
raw
history blame
8.58 kB
### title: 010125-daysoff-assistant-api
### file: app.py
import asyncio
import os
import re
import time
import json
import torch
import logging
from api_docs_mck import api_docs_str
#from daysoff import daysoff_str ## make daysoff.py, put json info in dict.
#from personvernpolicy import personvernpolicy_str ## make personvernpolicy.py, put json info in dict.
import chainlit as cl
from langchain import hub
from langchain.chains import LLMChain, APIChain
from langchain_core.prompts import PromptTemplate
from langchain.memory.buffer import ConversationBufferMemory
from langchain_openai import OpenAI
from langchain_community.llms import HuggingFaceHub
from langchain_huggingface import HuggingFacePipeline
from langchain_huggingface import HuggingFaceEndpoint
from langchain_core.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
#logging.basicConfig(level=logging.DEBUG)
HUGGINGFACEHUB_API_TOKEN = os.environ.get("HUGGINGFACEHUB_API_TOKEN")
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")
#HF_INFERENCE_ENDPOINT =
#BOOKING_ID = re.compile(r'\b[A-Z]{6}\d{6}\b')
BOOKING_KEYWORDS = [
"booking",
"bestillingsnummer",
"bookingen",
"ordrenummer",
"reservation",
"rezerwacji",
"bookingreferanse",
"rezerwacja",
"booket",
"reservation number",
"bestilling",
"order number",
"booking ID",
"identyfikacyjny pล‚atnoล›ci"
]
daysoff_assistant_template = """
You are a customer support assistant (โ€™kundeservice AI assistentโ€™) for Daysoff named "Agrippa".
Your primary objective is to provide exceptional, empathetic, and efficient customer service.
This includes retrieving booking details for a given booking ID and answering questions about
Daysoff's personvernspolicy and firmahytteordning.
Core Operational Guidelines:
- By default, you respond in Norwegian language
- Prioritize customer satisfaction and question-answering
- Provide clear, concise, and helpful responses
- Use a friendly, professional, and approachable tone
Interaction Protocol:
4. Never fabricate information
5. Ask clarifying questions if the query is ambiguous
6. Always transparent about information limitations
7. Prioritize precision over verbosity
Persona Characteristics:
- Gender: female
- Role: customer support assistant for Dayoff.no
- Communication Style: Warm, direct, solution-oriented
- Brand Personality: Helpful, efficient, trustworthy
Response Structure:
- Directly address the user's question
- Provide step-by-step guidance if applicable
Ethical Constraints:
- Stay within the scope of Dayoff.no's services
- Maintain customer privacy
- Avoid sharing sensitive personal information
- Refer complex issues to human support at [email protected] when necessary
Special Instructions:
- Adapt communication complexity to the customer's apparent technical understanding
- Proactively suggest solutions based on contextual information
Chat History: {chat_history}
Question: {question}
Answer:
"""
daysoff_assistant_prompt= PromptTemplate(
input_variables=["chat_history", "question"],
template=daysoff_assistant_template
)
api_url_template = """
Given the following API Documentation for Daysoff's official
booking information API: {api_docs}
Your task is to construct the most efficient API URL to answer
the user's question, ensuring the
call is optimized to include only the necessary information.
Question: {question}
API URL:
"""
api_url_prompt = PromptTemplate(input_variables=['api_docs', 'question'],
template=api_url_template)
# (..) If {question} contains an alphanumeric identifier consisting of 6 letters followed by 6 digits (e.g., DAGHNS116478)
api_response_template = """
With the API Documentation for Daysoff's official API: {api_docs} in mind,
and user question: {question}, and given this API URL: {api_url} for querying,
here is the response from Daysoff's API: {api_response}.
Please provide an summary that directly addresses the user's question,
omitting technical details like response format, and
focusing on delivering the answer with clarity and conciseness,
as if a human customer service agent is providing this information.
Summary:
"""
api_response_prompt = PromptTemplate(
input_variables=['api_docs', 'question', 'api_url', 'api_response'],
template=api_response_template
)
@cl.on_chat_start
def setup_multiple_chains():
llm = OpenAI(model='gpt-3.5-turbo-instruct',
temperature=0.7, openai_api_key=OPENAI_API_KEY)
#llm = HuggingFaceEndpoint(
#repo_id="google/gemma-2-2b", #"norallm/normistral-7b-warm-instruct",
#endpoint_url="http://localhost:8010/",
#model="google/gemma-2-2b",
#max_new_tokens=512,
#top_k=10,
#top_p=0.95,
#typical_p=0.95,
#temperature=0.7,
#repetition_penalty=1.03,
#huggingfacehub_api_token=HUGGINGFACEHUB_API_TOKEN,
#task="text-generation"
#)
#llm = HuggingFacePipeline.from_model_id(
#model_id="normistral-7b-warm-instruct",
#task="text-generation",
#pipeline_kwargs={"max_new_tokens": 10},
#)
conversation_memory = ConversationBufferMemory(memory_key="chat_history",
max_len=200,
return_messages=True,
)
llm_chain = LLMChain(llm=llm,
prompt=daysoff_assistant_prompt,
memory=conversation_memory
)
cl.user_session.set("llm_chain", llm_chain)
api_chain = APIChain.from_llm_and_api_docs(
llm=llm,
api_docs=api_docs_str,
api_url_prompt=api_url_prompt,
api_response_prompt=api_response_prompt,
verbose=True,
limit_to_domains=None #["https://670dccd0073307b4ee447f2f.mockapi.io/daysoff/api/V1"]
)
cl.user_session.set("api_chain", api_chain)
import logging
@cl.on_message
async def handle_message(message: cl.Message):
user_message = message.content
llm_chain = cl.user_session.get("llm_chain")
api_chain = cl.user_session.get("api_chain")
api_keywords = ["firmahytteordning", "personvernspolicy"]
# --check message for a booking ID
try:
# --check message for booking ID
if re.search(r'\b[A-Z]{6}\d{6}\b', user_message):
logging.debug(f"Booking ID detected in message: {user_message}")
response = await api_chain.acall(user_message, callbacks=[cl.AsyncLangchainCallbackHandler()])
# --check message for API keywords
elif any(keyword in user_message.lower() for keyword in api_keywords):
logging.debug(f"API keyword detected in message: {user_message}")
response = await api_chain.acall(user_message, callbacks=[cl.AsyncLangchainCallbackHandler()])
else:
logging.debug("Triggering LLMChain for everything else.")
response = await llm_chain.acall(user_message, callbacks=[cl.AsyncLangchainCallbackHandler()])
except Exception as e:
logging.error(f"Error in processing message: {str(e)}")
response = {"output": "Beklager, jeg kunne ikke behandle forespรธrselen din akkurat nรฅ."}
response_key = "output" if "output" in response else "text"
await cl.Message(response.get(response_key, "")).send()
return message.content
"""
@cl.on_message
async def handle_message(message: cl.Message):
user_message = message.content.lower()
llm_chain = cl.user_session.get("llm_chain")
api_chain = cl.user_session.get("api_chain")
#if any(keyword in user_message for keyword in ["firmahytteordning","personvernspolicy"]):
#def is_booking_query(user_message):
#match = re.search(r'\b[A-Z]{6}\d{6}\b', user_message)
#return match is not None # --works boolean
#booked = is_booking_query(user_message)
#if booked:
if re.search(r'\b[A-Z]{6}\d{6}\b', user_message): # ex. "EQJLCQ362149"
response = await api_chain.ainvoke(user_message,
callbacks=[cl.AsyncLangchainCallbackHandler()])
else:
response = await llm_chain.ainvoke(user_message,
callbacks=[cl.AsyncLangchainCallbackHandler()])
response_key = "output" if "output" in response else "text"
await cl.Message(response.get(response_key, "")).send()
return message.content
"""