Spaces:
Sleeping
Sleeping
### title: 010125-daysoff-assistant-api | |
### file: app.py | |
import asyncio | |
import os | |
import re | |
import time | |
import json | |
import torch | |
import logging | |
from api_docs_mck import api_docs_str | |
#from daysoff import daysoff_str ## make daysoff.py, put json info in dict. | |
#from personvernpolicy import personvernpolicy_str ## make personvernpolicy.py, put json info in dict. | |
import chainlit as cl | |
from langchain import hub | |
from langchain.chains import LLMChain, APIChain | |
from langchain_core.prompts import PromptTemplate | |
from langchain.memory.buffer import ConversationBufferMemory | |
from langchain_openai import OpenAI | |
from langchain_community.llms import HuggingFaceHub | |
from langchain_huggingface import HuggingFacePipeline | |
from langchain_huggingface import HuggingFaceEndpoint | |
from langchain_core.callbacks.streaming_stdout import StreamingStdOutCallbackHandler | |
#logging.basicConfig(level=logging.DEBUG) | |
HUGGINGFACEHUB_API_TOKEN = os.environ.get("HUGGINGFACEHUB_API_TOKEN") | |
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY") | |
#HF_INFERENCE_ENDPOINT = | |
#BOOKING_ID = re.compile(r'\b[A-Z]{6}\d{6}\b') | |
BOOKING_KEYWORDS = [ | |
"booking", | |
"bestillingsnummer", | |
"bookingen", | |
"ordrenummer", | |
"reservation", | |
"rezerwacji", | |
"bookingreferanse", | |
"rezerwacja", | |
"booket", | |
"reservation number", | |
"bestilling", | |
"order number", | |
"booking ID", | |
"identyfikacyjny pลatnoลci" | |
] | |
daysoff_assistant_template = """ | |
You are a customer support assistant (โkundeservice AI assistentโ) for Daysoff named "Agrippa". | |
Your primary objective is to provide exceptional, empathetic, and efficient customer service. | |
This includes retrieving booking details for a given booking ID and answering questions about | |
Daysoff's personvernspolicy and firmahytteordning. | |
Core Operational Guidelines: | |
- By default, you respond in Norwegian language | |
- Prioritize customer satisfaction and question-answering | |
- Provide clear, concise, and helpful responses | |
- Use a friendly, professional, and approachable tone | |
Interaction Protocol: | |
4. Never fabricate information | |
5. Ask clarifying questions if the query is ambiguous | |
6. Always transparent about information limitations | |
7. Prioritize precision over verbosity | |
Persona Characteristics: | |
- Gender: female | |
- Role: customer support assistant for Dayoff.no | |
- Communication Style: Warm, direct, solution-oriented | |
- Brand Personality: Helpful, efficient, trustworthy | |
Response Structure: | |
- Directly address the user's question | |
- Provide step-by-step guidance if applicable | |
Ethical Constraints: | |
- Stay within the scope of Dayoff.no's services | |
- Maintain customer privacy | |
- Avoid sharing sensitive personal information | |
- Refer complex issues to human support at [email protected] when necessary | |
Special Instructions: | |
- Adapt communication complexity to the customer's apparent technical understanding | |
- Proactively suggest solutions based on contextual information | |
Chat History: {chat_history} | |
Question: {question} | |
Answer: | |
""" | |
daysoff_assistant_prompt= PromptTemplate( | |
input_variables=["chat_history", "question"], | |
template=daysoff_assistant_template | |
) | |
api_url_template = """ | |
Given the following API Documentation for Daysoff's official | |
booking information API: {api_docs} | |
Your task is to construct the most efficient API URL to answer | |
the user's question, ensuring the | |
call is optimized to include only the necessary information. | |
Question: {question} | |
API URL: | |
""" | |
api_url_prompt = PromptTemplate(input_variables=['api_docs', 'question'], | |
template=api_url_template) | |
# (..) If {question} contains an alphanumeric identifier consisting of 6 letters followed by 6 digits (e.g., DAGHNS116478) | |
api_response_template = """ | |
With the API Documentation for Daysoff's official API: {api_docs} in mind, | |
and user question: {question}, and given this API URL: {api_url} for querying, | |
here is the response from Daysoff's API: {api_response}. | |
Please provide an summary that directly addresses the user's question, | |
omitting technical details like response format, and | |
focusing on delivering the answer with clarity and conciseness, | |
as if a human customer service agent is providing this information. | |
Summary: | |
""" | |
api_response_prompt = PromptTemplate( | |
input_variables=['api_docs', 'question', 'api_url', 'api_response'], | |
template=api_response_template | |
) | |
def setup_multiple_chains(): | |
llm = OpenAI(model='gpt-3.5-turbo-instruct', | |
temperature=0.7, openai_api_key=OPENAI_API_KEY) | |
#llm = HuggingFaceEndpoint( | |
#repo_id="google/gemma-2-2b", #"norallm/normistral-7b-warm-instruct", | |
#endpoint_url="http://localhost:8010/", | |
#model="google/gemma-2-2b", | |
#max_new_tokens=512, | |
#top_k=10, | |
#top_p=0.95, | |
#typical_p=0.95, | |
#temperature=0.7, | |
#repetition_penalty=1.03, | |
#huggingfacehub_api_token=HUGGINGFACEHUB_API_TOKEN, | |
#task="text-generation" | |
#) | |
#llm = HuggingFacePipeline.from_model_id( | |
#model_id="normistral-7b-warm-instruct", | |
#task="text-generation", | |
#pipeline_kwargs={"max_new_tokens": 10}, | |
#) | |
conversation_memory = ConversationBufferMemory(memory_key="chat_history", | |
max_len=200, | |
return_messages=True, | |
) | |
llm_chain = LLMChain(llm=llm, | |
prompt=daysoff_assistant_prompt, | |
memory=conversation_memory | |
) | |
cl.user_session.set("llm_chain", llm_chain) | |
api_chain = APIChain.from_llm_and_api_docs( | |
llm=llm, | |
api_docs=api_docs_str, | |
api_url_prompt=api_url_prompt, | |
api_response_prompt=api_response_prompt, | |
verbose=True, | |
limit_to_domains=None #["https://670dccd0073307b4ee447f2f.mockapi.io/daysoff/api/V1"] | |
) | |
cl.user_session.set("api_chain", api_chain) | |
import logging | |
async def handle_message(message: cl.Message): | |
user_message = message.content | |
llm_chain = cl.user_session.get("llm_chain") | |
api_chain = cl.user_session.get("api_chain") | |
api_keywords = ["firmahytteordning", "personvernspolicy"] | |
# --check message for a booking ID | |
try: | |
# --check message for booking ID | |
if re.search(r'\b[A-Z]{6}\d{6}\b', user_message): | |
logging.debug(f"Booking ID detected in message: {user_message}") | |
response = await api_chain.acall(user_message, callbacks=[cl.AsyncLangchainCallbackHandler()]) | |
# --check message for API keywords | |
elif any(keyword in user_message.lower() for keyword in api_keywords): | |
logging.debug(f"API keyword detected in message: {user_message}") | |
response = await api_chain.acall(user_message, callbacks=[cl.AsyncLangchainCallbackHandler()]) | |
else: | |
logging.debug("Triggering LLMChain for everything else.") | |
response = await llm_chain.acall(user_message, callbacks=[cl.AsyncLangchainCallbackHandler()]) | |
except Exception as e: | |
logging.error(f"Error in processing message: {str(e)}") | |
response = {"output": "Beklager, jeg kunne ikke behandle forespรธrselen din akkurat nรฅ."} | |
response_key = "output" if "output" in response else "text" | |
await cl.Message(response.get(response_key, "")).send() | |
return message.content | |
""" | |
@cl.on_message | |
async def handle_message(message: cl.Message): | |
user_message = message.content.lower() | |
llm_chain = cl.user_session.get("llm_chain") | |
api_chain = cl.user_session.get("api_chain") | |
#if any(keyword in user_message for keyword in ["firmahytteordning","personvernspolicy"]): | |
#def is_booking_query(user_message): | |
#match = re.search(r'\b[A-Z]{6}\d{6}\b', user_message) | |
#return match is not None # --works boolean | |
#booked = is_booking_query(user_message) | |
#if booked: | |
if re.search(r'\b[A-Z]{6}\d{6}\b', user_message): # ex. "EQJLCQ362149" | |
response = await api_chain.ainvoke(user_message, | |
callbacks=[cl.AsyncLangchainCallbackHandler()]) | |
else: | |
response = await llm_chain.ainvoke(user_message, | |
callbacks=[cl.AsyncLangchainCallbackHandler()]) | |
response_key = "output" if "output" in response else "text" | |
await cl.Message(response.get(response_key, "")).send() | |
return message.content | |
""" | |