cantabile-kwok
prepare demo page
05005db
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# Copyright 2019 Tomoki Hayashi
# MIT License (https://opensource.org/licenses/MIT)
# Modified by Yiwei Guo, 2024
"""Train vec2wav."""
import argparse
import logging
import os
import sys
import random
from collections import defaultdict
import matplotlib
import numpy as np
import soundfile as sf
import torch
import torch.nn.functional as F
import yaml
import torch.multiprocessing as mp
from tensorboardX import SummaryWriter
from torch.utils.data import DataLoader
from tqdm import tqdm
import vec2wav2
import vec2wav2.models
import vec2wav2.optimizers
from torch.utils.data.distributed import DistributedSampler
from vec2wav2.datasets import AudioMelSCPDataset
from vec2wav2.layers import PQMF
from vec2wav2.losses import DiscriminatorAdversarialLoss
from vec2wav2.losses import FeatureMatchLoss
from vec2wav2.losses import GeneratorAdversarialLoss
from vec2wav2.losses import MelSpectrogramLoss
from vec2wav2.losses import MultiResolutionSTFTLoss
from vec2wav2.utils import crop_seq, load_feat_codebook, idx2vec
from vec2wav2.utils.espnet_utils import pad_list, make_non_pad_mask
# set to avoid matplotlib error in CLI environment
matplotlib.use("Agg")
def set_loglevel(verbose):
# set logger
if verbose > 1:
logging.basicConfig(
level=logging.DEBUG,
stream=sys.stdout,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
elif verbose > 0:
logging.basicConfig(
level=logging.INFO,
stream=sys.stdout,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
else:
logging.basicConfig(
level=logging.WARN,
stream=sys.stdout,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
logging.warning("Skip DEBUG/INFO messages")
class Trainer(object):
"""Customized trainer module for Parallel WaveGAN training."""
def __init__(
self,
steps,
epochs,
data_loader,
sampler,
model,
criterion,
optimizer,
scheduler,
config,
device=torch.device("cpu"),
):
"""Initialize trainer.
Args:
steps (int): Initial global steps.
epochs (int): Initial global epochs.
data_loader (dict): Dict of data loaders. It must contain "train" and "dev" loaders.
model (dict): Dict of models. It must contain "generator" and "discriminator" models.
criterion (dict): Dict of criteria. It must contain "stft" and "mse" criteria.
optimizer (dict): Dict of optimizers. It must contain "generator" and "discriminator" optimizers.
scheduler (dict): Dict of schedulers. It must contain "generator" and "discriminator" schedulers.
config (dict): Config dict loaded from yaml format configuration file.
device (torch.deive): Pytorch device instance.
"""
self.steps = steps
self.epochs = epochs
self.data_loader = data_loader
self.sampler = sampler
self.model = model
self.criterion = criterion
self.optimizer = optimizer
self.scheduler = scheduler
self.config = config
self.device = device
self.writer = SummaryWriter(config["outdir"])
self.finish_train = False
self.total_train_loss = defaultdict(float)
self.total_eval_loss = defaultdict(float)
# load vq codebook
feat_codebook_path = self.config["vq_codebook"]
self.feat_codebook, self.feat_codebook_numgroups = load_feat_codebook(np.load(feat_codebook_path, allow_pickle=True), device)
def run(self):
"""Run training."""
self.tqdm = tqdm(initial=self.steps, total=self.config["train_max_steps"], desc="[train]")
while True:
# train one epoch
self._train_epoch()
# check whether training is finished
if self.finish_train:
break
self.tqdm.close()
logging.info("Finished training.")
def save_checkpoint(self, checkpoint_path):
"""Save checkpoint.
Args:
checkpoint_path (str): Checkpoint path to be saved.
"""
state_dict = {
"optimizer": {
"generator": self.optimizer["generator"].state_dict(),
"discriminator": self.optimizer["discriminator"].state_dict(),
},
"scheduler": {
"generator": self.scheduler["generator"].state_dict(),
"discriminator": self.scheduler["discriminator"].state_dict(),
},
"steps": self.steps,
"epochs": self.epochs,
}
if self.config["distributed"]:
state_dict["model"] = {
"generator": self.model["generator"].module.state_dict(),
"discriminator": self.model["discriminator"].module.state_dict(),
}
else:
state_dict["model"] = {
"generator": self.model["generator"].state_dict(),
"discriminator": self.model["discriminator"].state_dict(),
}
if not os.path.exists(os.path.dirname(checkpoint_path)):
os.makedirs(os.path.dirname(checkpoint_path))
torch.save(state_dict, checkpoint_path)
def load_checkpoint(self, checkpoint_path, load_only_params=False):
"""Load checkpoint.
Args:
checkpoint_path (str): Checkpoint path to be loaded.
load_only_params (bool): Whether to load only model parameters.
"""
state_dict = torch.load(checkpoint_path, map_location="cpu")
if self.config["distributed"]:
self.model["generator"].module.load_state_dict(
state_dict["model"]["generator"]
)
self.model["discriminator"].module.load_state_dict(
state_dict["model"]["discriminator"]
)
else:
self.model["generator"].load_state_dict(state_dict["model"]["generator"])
self.model["discriminator"].load_state_dict(
state_dict["model"]["discriminator"]
)
if not load_only_params:
self.steps = state_dict["steps"]
self.epochs = state_dict["epochs"]
self.optimizer["generator"].load_state_dict(state_dict["optimizer"]["generator"])
self.optimizer["discriminator"].load_state_dict(state_dict["optimizer"]["discriminator"])
self.scheduler["generator"].load_state_dict(state_dict["scheduler"]["generator"])
self.scheduler["discriminator"].load_state_dict(state_dict["scheduler"]["discriminator"])
def _train_step(self, batch):
"""Train model one step."""
# parse batch
vqidx, mel, prompt, y, xlens, prompt_lens = batch
vqidx = vqidx.to(self.device)
mel = mel.to(self.device)
prompt = prompt.to(self.device)
vqvec = idx2vec(self.feat_codebook, vqidx, self.feat_codebook_numgroups) # (B, L, D)
y = y.unsqueeze(-2).to(self.device) # (B, 1, T)
# build mask
mask = make_non_pad_mask(xlens).to(self.device) # (B, L)
prompt_mask = make_non_pad_mask(prompt_lens).to(self.device) # (B, L_prompt)
# crop wav sequence
crop_xlen = min(self.config["crop_max_frames"], min(xlens))
x_offsets = [np.random.randint(0, l - crop_xlen + 1) for l in xlens]
crop_ylen = crop_xlen * self.config["hop_size"]
y_offsets = [o * self.config["hop_size"] for o in x_offsets]
y = crop_seq(y, y_offsets, crop_ylen)
#######################
# Generator #
#######################
if self.steps > self.config.get("generator_train_start_steps", 0):
mel_, _, y_ = self.model["generator"](vqvec, prompt, mask, prompt_mask, crop_xlen, x_offsets) # (B, L, 80), (B, C, T)
# initialize
gen_loss, aux_loss = 0.0, 0.0
# frontend mel prediction loss
if self.steps <= self.config.get("frontend_mel_prediction_stop_steps", 0):
frontend_mel_pred_loss = F.l1_loss(torch.masked_select(mel, mask.unsqueeze(-1)),
torch.masked_select(mel_, mask.unsqueeze(-1)))
self.total_train_loss["train/frontend_mel_pred_loss"] += frontend_mel_pred_loss.item()
gen_loss += self.config["lambda_frontend_mel_prediction"] * frontend_mel_pred_loss
# multi-resolution sfft loss
if self.config["use_stft_loss"]:
sc_loss, mag_loss = self.criterion["stft"](y_, y)
aux_loss += sc_loss + mag_loss
self.total_train_loss["train/spectral_convergence_loss"] += sc_loss.item()
self.total_train_loss["train/log_stft_magnitude_loss"] += mag_loss.item()
# subband multi-resolution stft loss
if self.config["use_subband_stft_loss"]:
aux_loss *= 0.5 # for balancing with subband stft loss
y_mb = self.criterion["pqmf"].analysis(y)
y_mb_ = self.criterion["pqmf"].analysis(y_)
sub_sc_loss, sub_mag_loss = self.criterion["sub_stft"](y_mb_, y_mb)
aux_loss += 0.5 * (sub_sc_loss + sub_mag_loss)
self.total_train_loss["train/sub_spectral_convergence_loss"] += sub_sc_loss.item()
self.total_train_loss["train/sub_log_stft_magnitude_loss"] += sub_mag_loss.item()
# mel spectrogram loss
if self.config["use_mel_loss"]:
mel_loss = self.criterion["mel"](y_, y)
aux_loss += mel_loss
self.total_train_loss["train/mel_loss"] += mel_loss.item()
# weighting aux loss
gen_loss += self.config.get("lambda_aux", 1.0) * aux_loss
# adversarial loss
if self.steps > self.config["discriminator_train_start_steps"]:
p_ = self.model["discriminator"](y_)
adv_loss = self.criterion["gen_adv"](p_)
self.total_train_loss["train/adversarial_loss"] += adv_loss.item()
# feature matching loss
if self.config["use_feat_match_loss"]:
# no need to track gradients
with torch.no_grad():
p = self.model["discriminator"](y)
fm_loss = self.criterion["feat_match"](p_, p)
self.total_train_loss["train/feature_matching_loss"] += fm_loss.item()
adv_loss += self.config["lambda_feat_match"] * fm_loss
# add adversarial loss to generator loss
gen_loss += self.config["lambda_adv"] * adv_loss
self.total_train_loss["train/generator_loss"] += gen_loss.item()
# update generator
self.optimizer["generator"].zero_grad()
gen_loss.backward()
if self.config["generator_grad_norm"] > 0:
torch.nn.utils.clip_grad_norm_(
self.model["generator"].parameters(),
self.config["generator_grad_norm"],
)
self.optimizer["generator"].step()
self.scheduler["generator"].step()
#######################
# Discriminator #
#######################
if self.steps > self.config["discriminator_train_start_steps"]:
# re-compute y_ which leads better quality
with torch.no_grad():
# logging.info(f"{vqvec.shape, prompt.shape, mask.shape, prompt_mask.shape}")
_, _, y_ = self.model["generator"](vqvec, prompt, mask, prompt_mask, crop_xlen, x_offsets) # (B, L, 80), (B, C, T)
if self.config["generator_params"]["out_channels"] > 1:
y_ = self.criterion["pqmf"].synthesis(y_)
# discriminator loss
p = self.model["discriminator"](y)
p_ = self.model["discriminator"](y_.detach())
real_loss, fake_loss = self.criterion["dis_adv"](p_, p)
dis_loss = real_loss + fake_loss
self.total_train_loss["train/real_loss"] += real_loss.item()
self.total_train_loss["train/fake_loss"] += fake_loss.item()
self.total_train_loss["train/discriminator_loss"] += dis_loss.item()
# update discriminator
self.optimizer["discriminator"].zero_grad()
dis_loss.backward()
if self.config["discriminator_grad_norm"] > 0:
torch.nn.utils.clip_grad_norm_(
self.model["discriminator"].parameters(),
self.config["discriminator_grad_norm"],
)
self.optimizer["discriminator"].step()
self.scheduler["discriminator"].step()
# update counts
self.steps += 1
self.tqdm.update(1)
self._check_train_finish()
def _train_epoch(self):
"""Train model one epoch."""
for train_steps_per_epoch, batch in enumerate(self.data_loader["train"], 1):
# train one step
self._train_step(batch)
# check interval
if self.config["rank"] == 0:
self._check_log_interval()
self._check_eval_interval()
self._check_save_interval()
# check whether training is finished
if self.finish_train:
return
# update
self.epochs += 1
self.train_steps_per_epoch = train_steps_per_epoch
logging.info(
f"(Steps: {self.steps}) Finished {self.epochs} epoch training "
f"({self.train_steps_per_epoch} steps per epoch)."
)
# needed for shuffle in distributed training
if self.config["distributed"]:
self.sampler["train"].set_epoch(self.epochs)
@torch.no_grad()
def _eval_step(self, batch):
"""Evaluate model one step."""
# parse batch
vqidx, mel, prompt, y, xlens, prompt_lens = batch
vqidx = vqidx.to(self.device).long()
mel = mel.to(self.device)
prompt = prompt.to(self.device)
vqvec = idx2vec(self.feat_codebook, vqidx, self.feat_codebook_numgroups)
y = y.unsqueeze(-2).to(self.device) # (B, 1, T)
# build mask
mask = make_non_pad_mask(xlens).to(self.device) # (B, L)
prompt_mask = make_non_pad_mask(prompt_lens).to(self.device) # (B, L_prompt)
#######################
# Generator #
#######################
mel_, _, y_ = self.model["generator"](vqvec, prompt, mask, prompt_mask) # (B, L, 80), (B, C, T)
# reconstruct the signal from multi-band signal
if self.config["generator_params"]["out_channels"] > 1:
y_mb_ = y_
y_ = self.criterion["pqmf"].synthesis(y_mb_)
# initialize
gen_loss = 0.0
aux_loss = 0.0
# frontend mel prediction loss
frontend_mel_pred_loss = F.l1_loss(torch.masked_select(mel, mask.unsqueeze(-1)),
torch.masked_select(mel_, mask.unsqueeze(-1)))
self.total_eval_loss["eval/frontend_mel_pred_loss"] += frontend_mel_pred_loss.item()
gen_loss += self.config["lambda_frontend_mel_prediction"] * frontend_mel_pred_loss
# multi-resolution stft loss
if self.config["use_stft_loss"]:
sc_loss, mag_loss = self.criterion["stft"](y_, y)
aux_loss += sc_loss + mag_loss
self.total_eval_loss["eval/spectral_convergence_loss"] += sc_loss.item()
self.total_eval_loss["eval/log_stft_magnitude_loss"] += mag_loss.item()
# subband multi-resolution stft loss
if self.config.get("use_subband_stft_loss", False):
aux_loss *= 0.5 # for balancing with subband stft loss
y_mb = self.criterion["pqmf"].analysis(y)
sub_sc_loss, sub_mag_loss = self.criterion["sub_stft"](y_mb_, y_mb)
self.total_eval_loss["eval/sub_spectral_convergence_loss"] += sub_sc_loss.item()
self.total_eval_loss["eval/sub_log_stft_magnitude_loss"] += sub_mag_loss.item()
aux_loss += 0.5 * (sub_sc_loss + sub_mag_loss)
# mel spectrogram loss
if self.config["use_mel_loss"]:
mel_loss = self.criterion["mel"](y_, y)
aux_loss += mel_loss
self.total_eval_loss["eval/mel_loss"] += mel_loss.item()
# weighting stft loss
gen_loss += aux_loss * self.config.get("lambda_aux", 1.0)
# adversarial loss
p_ = self.model["discriminator"](y_)
adv_loss = self.criterion["gen_adv"](p_)
gen_loss += self.config["lambda_adv"] * adv_loss
# feature matching loss
if self.config["use_feat_match_loss"]:
p = self.model["discriminator"](y)
fm_loss = self.criterion["feat_match"](p_, p)
self.total_eval_loss["eval/feature_matching_loss"] += fm_loss.item()
gen_loss += (
self.config["lambda_adv"] * self.config["lambda_feat_match"] * fm_loss
)
#######################
# Discriminator #
#######################
p = self.model["discriminator"](y)
p_ = self.model["discriminator"](y_)
# discriminator loss
real_loss, fake_loss = self.criterion["dis_adv"](p_, p)
dis_loss = real_loss + fake_loss
# add to total eval loss
self.total_eval_loss["eval/adversarial_loss"] += adv_loss.item()
self.total_eval_loss["eval/generator_loss"] += gen_loss.item()
self.total_eval_loss["eval/real_loss"] += real_loss.item()
self.total_eval_loss["eval/fake_loss"] += fake_loss.item()
self.total_eval_loss["eval/discriminator_loss"] += dis_loss.item()
def _eval_epoch(self):
"""Evaluate model one epoch."""
logging.info(f"(Steps: {self.steps}) Start evaluation.")
# change mode
for key in self.model.keys():
self.model[key].eval()
# calculate loss for each batch
for eval_steps_per_epoch, batch in enumerate(tqdm(self.data_loader["dev"], desc="[eval]"), 1):
# eval one step
self._eval_step(batch)
logging.info(
f"(Steps: {self.steps}) Finished evaluation "
f"({eval_steps_per_epoch} steps per epoch)."
)
# average loss
for key in self.total_eval_loss.keys():
self.total_eval_loss[key] /= eval_steps_per_epoch
logging.info(f"(Steps: {self.steps}) {key} = {self.total_eval_loss[key]:.4f}.")
# record
self._write_to_tensorboard(self.total_eval_loss)
# reset
self.total_eval_loss = defaultdict(float)
# restore mode
for key in self.model.keys():
self.model[key].train()
def _write_to_tensorboard(self, loss):
"""Write to tensorboard."""
for key, value in loss.items():
self.writer.add_scalar(key, value, self.steps)
def _check_save_interval(self):
if self.steps % self.config["save_interval_steps"] == 0:
self.save_checkpoint(os.path.join(self.config["outdir"],
f"checkpoint-{self.steps}steps.pkl"))
logging.info(f"Successfully saved checkpoint @ {self.steps} steps.")
def _check_eval_interval(self):
if self.steps % self.config["eval_interval_steps"] == 0:
self._eval_epoch()
def _check_log_interval(self):
if self.steps % self.config["log_interval_steps"] == 0:
for key in self.total_train_loss.keys():
self.total_train_loss[key] /= self.config["log_interval_steps"]
logging.info(f"(Steps: {self.steps}) {key} = {self.total_train_loss[key]:.4f}.")
self._write_to_tensorboard(self.total_train_loss)
# reset
self.total_train_loss = defaultdict(float)
def _check_train_finish(self):
if self.steps >= self.config["train_max_steps"]:
self.finish_train = True
class Collator(object):
"""Customized collator for Pytorch DataLoader in training."""
def __init__(
self,
hop_size=256,
win_length=1024,
sampling_rate=16000,
prompt_dim=1024,
prompt_fold_by_2=False
):
"""Initialize customized collator for PyTorch DataLoader.
Args:
hop_size (int): Hop size of features, in sampling points.
win_length (int): window length of features.
sampling_rate (int): sampling rate of waveform data
prompt_dim (int): number of prompt embedding dimensions
"""
self.hop_size = hop_size
self.win_length = win_length
self.sampling_rate = sampling_rate
self.prompt_dim = prompt_dim
if prompt_fold_by_2:
self.prompt_len_factor = 2
else:
self.prompt_len_factor = 1
def construct_prompt(self, mel_lens):
prompt_lens = [random.randint(int(l / (3 * self.prompt_len_factor)), int(l / (2 * self.prompt_len_factor))) for l in mel_lens]
prompt_starts = []
is_from_start = []
for ml, pl in zip(mel_lens, prompt_lens):
if random.random() > 0.5:
# from start
prompt_start = random.randint(0, 1 * self.sampling_rate // (self.hop_size * self.prompt_len_factor))
is_from_start.append(True)
else:
# from ending
prompt_start = random.randint((ml - 1 * self.sampling_rate // self.hop_size) // self.prompt_len_factor, ml // self.prompt_len_factor) - pl
is_from_start.append(False)
prompt_starts.append(prompt_start)
return prompt_lens, prompt_starts, is_from_start
def __call__(self, batch):
"""Convert into batch tensors.
Args:
batch (list): list of tuple of the pair of audio and features.
This collator will automatically determine the prompt segment (acoustic context) for each utterance.
The prompt is cut off from the current utterance, ranging from one third to half of the original utterance.
The prompt can be cut from either the starting or the ending of the utterance, within 1 second margin.
The other features include 2-dim VQ features (2 is the number of groups), and D-dim prompts (e.g. WavLM features)
Returns:
Tensor ys: waveform batch (B, T).
Tensors vqs, mels: Auxiliary feature batch (B, C, T'), where T' = T / hop_size.
Tensor prompts: prompt feature batch (B, C, T'')
List c_lengths, prompt_lengths: list of lengths
"""
batch = batch[0]
# check length
batch = [self._adjust_length(*b) for b in batch]
ys, vqs, mels, prompts_old = list(map(list, zip(*batch))) # [(a,b), (c,d)] -> [a, c], [b, d]
batch_size = len(vqs)
prompt_lengths, prompt_starts, is_from_starts = self.construct_prompt([len(m) for m in mels])
c_lengths = []
prompts = torch.zeros(batch_size, max(prompt_lengths), self.prompt_dim)
for i in range(batch_size):
prompts[i, :prompt_lengths[i]] = torch.tensor(prompts_old[i][prompt_starts[i]:prompt_starts[i]+prompt_lengths[i], :])
if is_from_starts[i]:
start_idx = (prompt_starts[i] + prompt_lengths[i])*self.prompt_len_factor
mels[i] = mels[i][start_idx:]
vqs[i] = vqs[i][start_idx:]
ys[i] = ys[i][start_idx * self.hop_size: ]
else:
end_idx = prompt_starts[i]*self.prompt_len_factor
mels[i] = mels[i][:end_idx]
vqs[i] = vqs[i][:end_idx]
ys[i] = ys[i][:end_idx * self.hop_size]
c_lengths.append(len(mels[i]))
vqs = pad_list([torch.tensor(c) for c in vqs], pad_value=0) # (B, L, Groups)
vqs = vqs.long()
mels = pad_list([torch.tensor(c) for c in mels], pad_value=0) # (B, L, 80)
ys = pad_list([torch.tensor(y, dtype=torch.float) for y in ys], pad_value=0)[:, :mels.size(1) * self.hop_size] # (B, T)
assert ys.size(1) == mels.size(1) * self.hop_size == vqs.size(1) * self.hop_size
return vqs, mels, prompts, ys, c_lengths, prompt_lengths
def _adjust_length(self, x, c, *args):
"""Adjust the audio and feature lengths.
Note:
Basically we assume that the length of x and c are adjusted
through preprocessing stage, but if we use other library processed
features, this process will be needed.
"""
if len(x) > len(c) * self.hop_size:
x = x[(self.win_length - self.hop_size) // 2:]
x = x[:len(c) * self.hop_size]
# check the legnth is valid
assert len(x) == len(c) * self.hop_size
return x, c, *args
def main(rank, n_gpus):
"""Run training process."""
parser = argparse.ArgumentParser(
description="Train vec2wav2 (See detail in vec2wav2/bin/train.py)."
)
parser.add_argument(
"--train-wav-scp",
default=None,
type=str,
help="kaldi-style wav.scp file for training. "
)
parser.add_argument(
"--train-vqidx-scp",
default=None,
type=str,
help="kaldi-style feats.scp file for training. "
)
parser.add_argument(
"--train-mel-scp",
default=None,
type=str,
help="kaldi-style feats.scp file for training. "
)
parser.add_argument(
"--train-prompt-scp",
default=None,
type=str,
help="prompt scp (in this case, utt to path)"
)
parser.add_argument(
"--train-segments",
default=None,
type=str,
help="kaldi-style segments file for training.",
)
parser.add_argument(
"--train-num-frames",
default=None,
type=str,
help="kaldi-style utt2num_frames file for training.",
)
parser.add_argument(
"--dev-wav-scp",
default=None,
type=str,
help="kaldi-style wav.scp file for validation. "
)
parser.add_argument(
"--dev-vqidx-scp",
default=None,
type=str,
help="kaldi-style feats.scp file for vaidation. "
)
parser.add_argument(
"--dev-mel-scp",
default=None,
type=str,
help="kaldi-style feats.scp file for vaidation. "
)
parser.add_argument(
"--dev-prompt-scp",
default=None,
type=str,
help="prompt scp (in this case, utt to path)"
)
parser.add_argument(
"--dev-segments",
default=None,
type=str,
help="kaldi-style segments file for validation.",
)
parser.add_argument(
"--dev-num-frames",
default=None,
type=str,
help="kaldi-style utt2num_frames file for validation.",
)
parser.add_argument(
"--outdir",
type=str,
required=True,
help="directory to save checkpoints.",
)
parser.add_argument(
"--config",
type=str,
required=True,
help="yaml format configuration file.",
)
parser.add_argument(
"--pretrain",
default="",
type=str,
nargs="?",
help='checkpoint file path to load pretrained params. (default="")',
)
parser.add_argument(
"--resume",
default="",
type=str,
nargs="?",
help='checkpoint file path to resume training. (default="")',
)
parser.add_argument(
"--verbose",
type=int,
default=1,
help="logging level. higher is more logging. (default=1)",
)
parser.add_argument("--vq-codebook", default=None, type=str)
# parser.add_argument("--sampling-rate", type=int)
# parser.add_argument("--num-mels", type=int)
# parser.add_argument("--hop-size", type=int)
# parser.add_argument("--win-length", type=int)
args = parser.parse_args()
# init distributed training
device = torch.device("cuda")
# effective when using fixed size inputs
# see https://discuss.pytorch.org/t/what-does-torch-backends-cudnn-benchmark-do/5936
torch.backends.cudnn.benchmark = True
# setup for distributed training
# see example: https://github.com/NVIDIA/apex/tree/master/examples/simple/distributed
if n_gpus == 1:
assert rank == 0
set_loglevel(args.verbose)
# check directory existence
if not os.path.exists(args.outdir):
os.makedirs(args.outdir)
# init process group
logging.info("Synchronizing between all workers.")
torch.distributed.init_process_group(backend="nccl", init_method="env://", world_size=n_gpus, rank=rank)
torch.cuda.set_device(rank)
logging.info("Finished init process group.")
# load and save config
with open(args.config) as f:
config = yaml.load(f, Loader=yaml.Loader)
config.update(vars(args))
config['rank'] = rank
config['distributed'] = True
config['world_size'] = n_gpus
config["version"] = vec2wav2.__version__ # add version info
if rank == 0:
with open(os.path.join(args.outdir, "config.yml"), "w") as f:
yaml.dump(config, f, Dumper=yaml.Dumper)
for key, value in config.items():
logging.info(f"{key} = {value}")
# get dataset
train_dataset = AudioMelSCPDataset(
wav_scp=args.train_wav_scp,
vqidx_scp=args.train_vqidx_scp,
mel_scp=args.train_mel_scp,
prompt_scp=args.train_prompt_scp,
utt2num_frames=args.train_num_frames,
segments=args.train_segments,
batch_frames=config.get("batch_frames", None),
batch_size=config.get("batch_size", None),
min_num_frames=config.get("min_num_frames", None),
max_num_frames=config.get("max_num_frames", None),
allow_cache=config.get("allow_cache", False), # keep compatibility
length_tolerance=config.get("length_tolerance", 2),
prompt_fold_by_2=config.get("prompt_fold_by_2", True)
)
if rank == 0:
logging.info(f"The number of training batches = {len(train_dataset)}.")
dev_dataset = AudioMelSCPDataset(
wav_scp=args.dev_wav_scp,
vqidx_scp=args.dev_vqidx_scp,
mel_scp=args.dev_mel_scp,
prompt_scp=args.dev_prompt_scp,
utt2num_frames=args.dev_num_frames,
segments=args.dev_segments,
min_num_frames=config.get("min_num_frames", None),
max_num_frames=config.get("max_num_frames", None),
allow_cache=config.get("allow_cache", False), # keep compatibility
length_tolerance=config.get("length_tolerance", 2),
prompt_fold_by_2=config.get("prompt_fold_by_2", True)
)
if rank == 0:
logging.info(f"The number of development batches = {len(dev_dataset)}.")
dataset = {
"train": train_dataset,
"dev": dev_dataset,
}
# get data loader
collator = Collator(
hop_size=config["hop_size"],
win_length=config["win_length"],
sampling_rate=config["sampling_rate"],
prompt_dim=config['frontend_params']['prompt_channels'],
prompt_fold_by_2=config.get("prompt_fold_by_2", True)
)
sampler = {
"train": DistributedSampler(
dataset=dataset["train"],
num_replicas=n_gpus,
rank=rank,
shuffle=True,
),
"dev": DistributedSampler(
dataset=dataset["dev"],
num_replicas=n_gpus,
rank=rank,
shuffle=False,
)}
data_loader = {
"train": DataLoader(
dataset=dataset["train"],
shuffle=False,
collate_fn=collator,
num_workers=config["num_workers"],
sampler=sampler["train"],
pin_memory=config["pin_memory"],
),
"dev": DataLoader(
dataset=dataset["dev"],
shuffle=False,
collate_fn=collator,
num_workers=config["num_workers"],
sampler=sampler["dev"],
pin_memory=config["pin_memory"],
),
}
# define models
generator_class = getattr(
vec2wav2.models,
# keep compatibility
config.get("generator_type", "ParallelWaveGANGenerator"),
)
discriminator_class = getattr(
vec2wav2.models,
# keep compatibility
config.get("discriminator_type", "ParallelWaveGANDiscriminator"),
)
model = {
"generator": vec2wav2.models.VEC2WAV2Generator(
vec2wav2.models.CTXVEC2WAVFrontend(config["prompt_net_type"], config["num_mels"], **config["frontend_params"]),
generator_class(**config["generator_params"])
).to(device),
"discriminator": discriminator_class(
**config["discriminator_params"],
).to(device),
}
# define criteria
criterion = {
"gen_adv": GeneratorAdversarialLoss(
# keep compatibility
**config.get("generator_adv_loss_params", {})
).to(device),
"dis_adv": DiscriminatorAdversarialLoss(
# keep compatibility
**config.get("discriminator_adv_loss_params", {})
).to(device),
}
if config.get("use_stft_loss", True): # keep compatibility
config["use_stft_loss"] = True
criterion["stft"] = MultiResolutionSTFTLoss(**config["stft_loss_params"]).to(device)
if config.get("use_subband_stft_loss", False): # keep compatibility
assert config["generator_params"]["out_channels"] > 1
criterion["sub_stft"] = MultiResolutionSTFTLoss(**config["subband_stft_loss_params"]).to(device)
else:
config["use_subband_stft_loss"] = False
if config.get("use_feat_match_loss", False): # keep compatibility
criterion["feat_match"] = FeatureMatchLoss(
# keep compatibility
**config.get("feat_match_loss_params", {}),
).to(device)
else:
config["use_feat_match_loss"] = False
if config.get("use_mel_loss", False): # keep compatibility
criterion["mel"] = MelSpectrogramLoss(**config["mel_loss_params"],).to(device)
else:
config["use_mel_loss"] = False
# define optimizers and schedulers
generator_optimizer_class = getattr(
vec2wav2.optimizers,
# keep compatibility
config.get("generator_optimizer_type", "RAdam"),
)
discriminator_optimizer_class = getattr(
vec2wav2.optimizers,
# keep compatibility
config.get("discriminator_optimizer_type", "RAdam"),
)
optimizer = {
"generator": generator_optimizer_class(
model["generator"].parameters(),
**config["generator_optimizer_params"],
),
"discriminator": discriminator_optimizer_class(
model["discriminator"].parameters(),
**config["discriminator_optimizer_params"],
),
}
generator_scheduler_class = getattr(
torch.optim.lr_scheduler,
# keep compatibility
config.get("generator_scheduler_type", "StepLR"),
)
discriminator_scheduler_class = getattr(
torch.optim.lr_scheduler,
# keep compatibility
config.get("discriminator_scheduler_type", "StepLR"),
)
scheduler = {
"generator": generator_scheduler_class(
optimizer=optimizer["generator"],
**config["generator_scheduler_params"],
),
"discriminator": discriminator_scheduler_class(
optimizer=optimizer["discriminator"],
**config["discriminator_scheduler_params"],
),
}
from torch.nn.parallel import DistributedDataParallel
model["generator"] = DistributedDataParallel(model["generator"], device_ids=[rank], find_unused_parameters=True)
model["discriminator"] = DistributedDataParallel(model["discriminator"], device_ids=[rank], find_unused_parameters=True)
if rank == 0:
# show settings
logging.info(model["generator"])
logging.info(f"Generator has nparams: {sum([p.numel() for p in model['generator'].parameters()])}")
logging.info(model["discriminator"])
logging.info(f"Discriminator has nparams: {sum([p.numel() for p in model['discriminator'].parameters()])}")
logging.info(optimizer["generator"])
logging.info(optimizer["discriminator"])
# define trainer
trainer = Trainer(
steps=0,
epochs=0,
data_loader=data_loader,
sampler=sampler,
model=model,
criterion=criterion,
optimizer=optimizer,
scheduler=scheduler,
config=config,
device=device,
)
# load pretrained parameters from checkpoint
if len(args.pretrain) != 0:
trainer.load_checkpoint(args.pretrain, load_only_params=True)
if rank == 0:
logging.info(f"Successfully load parameters from {args.pretrain}.")
# resume from checkpoint
if len(args.resume) != 0:
trainer.load_checkpoint(args.resume)
if rank == 0:
logging.info(f"Successfully resumed from {args.resume}.")
# run training loop
try:
trainer.run()
finally:
if rank == 0:
trainer.save_checkpoint(os.path.join(config["outdir"], f"checkpoint-{trainer.steps}steps.pkl"))
logging.info(f"Successfully saved checkpoint @ {trainer.steps}steps.")
if __name__ == "__main__":
assert torch.cuda.is_available(), "CPU training is not allowed."
n_gpus = torch.cuda.device_count()
print(f"============> using {n_gpus} GPUS")
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = "8000"
mp.spawn(
main,
nprocs=n_gpus,
args=(n_gpus,)
)