Spaces:
Paused
Paused
import os | |
from tqdm import tqdm | |
import torch | |
import torchvision.transforms as T | |
from diffusers.pipeline_utils import DiffusionPipeline | |
from torch.utils.data import DataLoader | |
from src.utils.image_composition import compose_img, compose_img_dresscode | |
from PIL import Image | |
def generate_images_from_mgd_pipe( | |
test_order: bool, | |
pipe: DiffusionPipeline, | |
test_dataloader: DataLoader, | |
save_name: str, | |
dataset: str, | |
output_dir: str, | |
guidance_scale: float = 7.5, | |
guidance_scale_pose: float = 7.5, | |
guidance_scale_sketch: float = 7.5, | |
sketch_cond_rate: float = 1.0, | |
start_cond_rate: float = 0.0, | |
no_pose: bool = False, | |
disentagle: bool = False, | |
seed: int = 1234, | |
) -> None: | |
#This function generates images from the given test dataloader and saves them to the output directory. | |
""" | |
Args: | |
test_order: The order of the test dataset. | |
pipe: The diffusion pipeline. | |
test_dataloader: The test dataloader. | |
save_name: The name of the saved images. | |
dataset: The name of the dataset. | |
output_dir: The output directory. | |
guidance_scale: The guidance scale. | |
guidance_scale_pose: The guidance scale for the pose. | |
guidance_scale_sketch: The guidance scale for the sketch. | |
sketch_cond_rate: The sketch condition rate. | |
start_cond_rate: The start condition rate. | |
no_pose: Whether to use the pose. | |
disentagle: Whether to use disentagle. | |
seed: The seed. | |
Returns: | |
None | |
""" | |
#assert(save_name != ""), "save_name must be specified" | |
#assert(output_dir != ""), "output_dir must be specified" | |
#path = os.path.join(output_dir, f"{save_name}_{test_order}", "images") | |
#os.makedirs(path, exist_ok=True) | |
generator = torch.Generator("cuda").manual_seed(seed) | |
for batch in tqdm(test_dataloader): | |
model_img = batch["image"] | |
mask_img = batch["inpaint_mask"] | |
mask_img = mask_img.type(torch.float32) | |
prompts = batch["original_captions"] # prompts is a list of length N, where N=batch size. | |
pose_map = batch["pose_map"] | |
sketch = batch["im_sketch"] | |
ext = ".jpg" | |
if disentagle: | |
guidance_scale = guidance_scale | |
num_samples = 1 | |
guidance_scale_pose = guidance_scale_pose | |
guidance_scale_sketch = guidance_scale_sketch | |
generated_images = pipe( | |
prompt=prompts, | |
image=model_img, | |
mask_image=mask_img, | |
pose_map=pose_map, | |
sketch=sketch, | |
height=512, | |
width=384, | |
guidance_scale=guidance_scale, | |
num_images_per_prompt=num_samples, | |
generator=generator, | |
sketch_cond_rate=sketch_cond_rate, | |
guidance_scale_pose=guidance_scale_pose, | |
guidance_scale_sketch=guidance_scale_sketch, | |
start_cond_rate=start_cond_rate, | |
no_pose=no_pose, | |
).images | |
else: | |
guidance_scale = 7.5 | |
num_samples = 1 | |
generated_images = pipe( | |
prompt=prompts, | |
image=model_img, | |
mask_image=mask_img, | |
pose_map=pose_map, | |
sketch=sketch, | |
height=512, | |
width=384, | |
guidance_scale=guidance_scale, | |
num_images_per_prompt=num_samples, | |
generator=generator, | |
sketch_cond_rate=sketch_cond_rate, | |
start_cond_rate=start_cond_rate, | |
no_pose=no_pose, | |
).images | |
for i in range(len(generated_images)): | |
model_i = model_img[i] * 0.5 + 0.5 | |
if dataset == "vitonhd": | |
final_img = compose_img(model_i, generated_images[i], batch['im_parse'][i]) | |
else: # dataset == Dresscode | |
face = batch["stitch_label"][i].to(model_img.device) | |
face = T.functional.resize(face, | |
size=(512,384), | |
interpolation=T.InterpolationMode.BILINEAR, | |
antialias = True | |
) | |
final_img = compose_img_dresscode( | |
gt_img = model_i, | |
fake_img = T.functional.to_tensor(generated_images[i]).to(model_img.device), | |
im_head = face | |
) | |
return T.functional.to_pil_image(final_img) | |
#final_img = T.functional.to_pil_image(final_img) | |
#final_img.save( | |
# os.path.join(path, batch["im_name"][i].replace(".jpg", ext))) | |