File size: 2,587 Bytes
84c4327
 
 
 
 
 
adcd7fc
 
687b539
 
adcd7fc
84c4327
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import os
import numpy as np
import streamlit as st
from transformers import AutoModelForTokenClassification, AutoProcessor
from PIL import Image, ImageDraw, ImageFont

import pytesseract

pytesseract.pytesseract.tesseract_cmd = '/usr/bin/tesseract' 


processor = AutoProcessor.from_pretrained("microsoft/layoutlmv3-base", apply_ocr=True)
model = AutoModelForTokenClassification.from_pretrained("capitaletech/language-levels-LayoutLMv3-v4")

labels = ["language", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10"]

label2id = {label: idx for idx, label in enumerate(labels)}
id2label = {v: k for k, v in label2id.items()}
label2color = {
    'language': 'blue', '1': 'red', '2': 'red', '3': 'red', 
    '4': 'orange', '5': 'orange', '6': 'orange', '7': 'green', 
    '8': 'green', '9': 'green', '10': 'green'
}

def unnormalize_box(bbox, width, height):
    return [
        width * (bbox[0] / 1000),
        height * (bbox[1] / 1000),
        width * (bbox[2] / 1000),
        height * (bbox[3] / 1000),
    ]

def iob_to_label(label):
    return label

def process_image(image):
    width, height = image.size

    encoding = processor(image, truncation=True, return_offsets_mapping=True, return_tensors="pt")
    offset_mapping = encoding.pop('offset_mapping')

    outputs = model(**encoding)

    predictions = outputs.logits.argmax(-1).squeeze().tolist()
    token_boxes = encoding.bbox.squeeze().tolist()

    is_subword = np.array(offset_mapping.squeeze().tolist())[:, 0] != 0
    true_predictions = [id2label[pred] for idx, pred in enumerate(predictions) if not is_subword[idx]]
    true_boxes = [unnormalize_box(box, width, height) for idx, box in enumerate(token_boxes) if not is_subword[idx]]

    draw = ImageDraw.Draw(image)
    font = ImageFont.load_default()
    for prediction, box in zip(true_predictions, true_boxes):
        predicted_label = iob_to_label(prediction)
        draw.rectangle(box, outline=label2color[predicted_label])
        draw.text((box[0] + 10, box[1] - 10), text=predicted_label, fill=label2color[predicted_label], font=font)

    return image

st.title("Language Levels Extraction using LayoutLMv3 Model")
st.write("Use this application to predict language levels in CVs.")

uploaded_file = st.file_uploader("Choose an image...", type="png")

if uploaded_file is not None:
    image = Image.open(uploaded_file)
    st.image(image, caption='Uploaded Image', use_column_width=True)

    if st.button('Predict'):
        annotated_image = process_image(image)
        st.image(annotated_image, caption='Annotated Image', use_column_width=True)