Spaces:
Runtime error
Runtime error
File size: 10,920 Bytes
d6526de 854a39c d74fc9d d6526de d7e5ae1 d6526de d7e5ae1 854a39c d7e5ae1 d6526de d7e5ae1 854a39c d7e5ae1 6e36199 d7e5ae1 d6526de d7e5ae1 57ffe1d d6526de d7e5ae1 d6526de 2f404b6 d6526de 2f404b6 d6526de 6e36199 2f404b6 6e36199 854a39c d6526de d7e5ae1 d6526de 57ffe1d d6526de 57ffe1d 6e36199 d6526de 57ffe1d 6e36199 2f404b6 854a39c 2f404b6 854a39c 2f404b6 854a39c 2f404b6 d7e5ae1 854a39c 1a51248 2f404b6 d7e5ae1 1a51248 854a39c 2f404b6 d7e5ae1 2f404b6 d7e5ae1 854a39c 2f404b6 6e36199 2f404b6 6e36199 89c8ebd 854a39c 6e36199 2f404b6 d7e5ae1 6e36199 854a39c 2f404b6 854a39c 6e36199 854a39c 6e36199 2f404b6 d7e5ae1 854a39c 6e36199 854a39c 2f404b6 d6526de 2f404b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
import gradio as gr
from gradio.flagging import FlaggingCallback, SimpleCSVLogger
from gradio.components import IOComponent
from gradio_client import utils as client_utils
from transformers import CLIPProcessor, CLIPModel, CLIPTokenizer
from sentence_transformers import util
import pickle
from PIL import Image
import os
import logging
import csv
import datetime
import time
from pathlib import Path
from typing import List, Any
class SaveRelevanceCallback(FlaggingCallback):
""" Callback to save the image relevance state to a csv file
"""
def __init__(self):
pass
def setup(self, components: List[IOComponent], flagging_dir: str | Path):
"""
This method gets called once at the beginning of the Interface.launch() method.
Args:
components ([IOComponent]): Set of components that will provide flagged data.
flagging_dir (string): typically containing the path to the directory where the flagging file should be storied
(provided as an argument to Interface.__init__()).
"""
self.components = components
self.flagging_dir = flagging_dir
os.makedirs(flagging_dir, exist_ok=True)
logging.info(f"[SaveRelevance]: Flagging directory set to {flagging_dir}")
def flag(self,
flag_data: List[Any],
flag_option: str | None = None,
flag_index: int | None = None,
username: str | None = None,
) -> int:
"""
This gets called every time the <flag> button is pressed.
Args:
interface: The Interface object that is being used to launch the flagging interface.
flag_data: The data to be flagged.
flag_option (optional): In the case that flagging_options are provided, the flag option that is being used.
flag_index (optional): The index of the sample that is being flagged.
username (optional): The username of the user that is flagging the data, if logged in.
Returns:
(int): The total number of samples that have been flagged.
"""
logging.info("[SaveRelevance]: Flagging data...")
flagging_dir = self.flagging_dir
log_filepath = Path(flagging_dir) / "relevance_log.csv"
is_new = not Path(log_filepath).exists()
headers = ["query", "selected image", "relevance", "username", "timestamp"]
csv_data = []
for idx, (component, sample) in enumerate(zip(self.components, flag_data)):
save_dir = Path(
flagging_dir
) / client_utils.strip_invalid_filename_characters(
getattr(component, "label", None) or f"component {idx}"
)
if gr.utils.is_update(sample):
csv_data.append(str(sample))
else:
new_data = component.deserialize(sample, save_dir=save_dir) if sample is not None else ""
if new_data and idx == 1:
# TO-DO: change this to a more robust way of getting the image name/identifier
# This doesn't work - the directory contains all the images in gallery
new_data = new_data.split('/')[-1]
csv_data.append(new_data)
csv_data.append(str(datetime.datetime.now()))
with open(log_filepath, "a", newline="", encoding="utf-8") as csvfile:
writer = csv.writer(csvfile)
if is_new:
writer.writerow(gr.utils.sanitize_list_for_csv(headers))
writer.writerow(gr.utils.sanitize_list_for_csv(csv_data))
with open(log_filepath, "r", encoding="utf-8") as csvfile:
line_count = len([None for _ in csv.reader(csvfile)]) - 1
logging.info(f"[SaveRelevance]: Saved a total of {line_count} samples to {log_filepath}")
return line_count
## Define model
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32")
examples = [[("Dog in the beach"), 2, 'ghost'],
[("Paris during night."), 1, 'ghost'],
[("A cute kangaroo"), 5, 'ghost'],
[("Dois cachorros"), 2, 'ghost'],
[("un homme marchant sur le parc"), 3, 'ghost'],
[("et høyt fjell"), 2, 'ghost']]
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(message)s', datefmt='%d-%b-%y %H:%M:%S')
#Open the precomputed embeddings
emb_filename = 'unsplash-25k-photos-embeddings.pkl'
with open(emb_filename, 'rb') as fIn:
img_names, img_emb = pickle.load(fIn)
#print(f'img_emb: {print(img_emb)}')
#print(f'img_names: {print(img_names)}')
# helper functions
def search_text(query, top_k=1):
"""" Search an image based on the text query.
Args:
query ([string]): query you want search for
top_k (int, optional): Amount of images o return]. Defaults to 1.
Returns:
[list]: list of images with captions that are related to the query.
[list]: list of images that are related to the query.
[list]: list of captions with the images that are related to the query.
[time]: start time of marking relevance of the images.
"""
logging.info(f"[SearchText]: Searching for {query} with top_k={top_k}...")
# First, we encode the query.
inputs = tokenizer([query], padding=True, return_tensors="pt")
query_emb = model.get_text_features(**inputs)
# Then, we use the util.semantic_search function, which computes the cosine-similarity
# between the query embedding and all image embeddings.
# It then returns the top_k highest ranked images, which we output
hits = util.semantic_search(query_emb, img_emb, top_k=top_k)[0]
image_caption = []
images = []
captions = []
for hit in hits:
#print(img_names[hit['corpus_id']])
object = Image.open(os.path.join(
"photos/", img_names[hit['corpus_id']]))
caption = ""
image_caption.append((object, caption))
images.append(object)
captions.append(caption)
curr_time = time.time()
logging.info(f"[SearchText]: Found {len(image_caption)} images at "
f"{time.ctime(curr_time)}.")
return image_caption, images, captions, curr_time
def display(images, texts, event_data: gr.SelectData):
""" Display the selected image and its caption.
Args:
images ([list]): list of images
texts ([list]): list of captions
event_data (gr.SelectData): data from the select event
Returns:
[object]: image
[string]: caption
"""
return images[event_data.index], texts[event_data.index]
callback = SaveRelevanceCallback()
time_record = SimpleCSVLogger()
with gr.Blocks(title="Text to Image using CLIP Model 📸") as demo:
# create display
gr.Markdown(
"""
# Text to Image using CLIP Model 📸
My version of the Gradio Demo fo CLIP model with the option to select relevance level of each image. \n
This demo is based on assessment for the 🤗 Huggingface course 2.
- To use it, simply write which image you are looking for. See the examples section below for more details.
- After you submit your query, you will see a gallery of images that are related to your query.
- You can select the relevance of each image by using the dropdown menu.
- Click save buttom to save the image and its relevance to [a csv file](./blob/main/image_relevance/relevance_log.csv).
- After you are done with all the images, click the `I'm Done!` buttom. We will save the time you spent to mark all images.
---
To-do:
- Add a way to save multiple image-relevance pairs at once.
- Improve image identification in the csv file. ✅
- Record time spent to mark all images. ✅
"""
)
with gr.Row():
with gr.Column():
query = gr.Textbox(lines=4,
label="Query",
placeholder="Text Here...")
top_k = gr.Slider(0, 5, step=1, label="Top K")
username = gr.Textbox(lines=1, label="Your Name",
placeholder="Text username here...")
submit_btn = gr.Button("Submit")
with gr.Column():
gallery = gr.Gallery(
label="Generated images", show_label=False, elem_id="gallery"
).style(grid=[3], height="auto")
t = gr.Textbox(label="Image Caption")
relevance = gr.Dropdown(
["0: Not relevant",
"1: Related but not relevant",
"2: Somehow relevant",
"3: Highly relevant"
], multiselect=False,
label="How relevent is this image?"
)
with gr.Row():
save_btn = gr.Button(
"Save after you select the relevance of each image")
save_all_btn = gr.Button("I'm finished!")
i = gr.Image(interactive=False, label="Selected Image", visible=False)
gr.Markdown("## Here are some examples you can use:")
gr.Examples(examples, [query, top_k, username])
# states for passing images and texts to other blocks
images = gr.State()
texts = gr.State()
start_time = gr.Number(visible=False)
time_spent = gr.Number(visible=False)
# when user input query and top_k
submit_btn.click(search_text, [query, top_k], [gallery, images, texts, start_time])
# selected = gr.State()
gallery.select(display, [images, texts], [i, t])
# when user click save button
# we will flag the current query, selected image, relevance, and username
callback.setup([query, i, relevance, username], "image_relevance")
time_record.setup([query, username, start_time, time_spent], "time")
save_btn.click(lambda *args: callback.flag(args),
[query, i, relevance, username], preprocess=False)
def log_time(query, username, start_time):
logging.info(f"[SaveAll]: Saving time for {query} by {username} from {time.ctime(start_time)}.")
time_record.flag([query, username,
str(datetime.datetime.fromtimestamp(time.time())),
round(time.time() - start_time, 3)])
save_all_btn.click(log_time, [query, username, start_time], preprocess=False)
gr.Markdown(
"""
You find more information about this demo on my ✨ github repository [marcelcastrobr](https://github.com/marcelcastrobr/huggingface_course2)
"""
)
if __name__ == "__main__":
demo.launch(debug=True)
|