|
import os |
|
import numpy as np |
|
import random |
|
import torch |
|
import shutil |
|
import csv |
|
import pprint |
|
import pandas as pd |
|
from loguru import logger |
|
from collections import OrderedDict |
|
import matplotlib.pyplot as plt |
|
import pickle |
|
import time |
|
import hashlib |
|
from scipy.spatial.transform import Rotation as R |
|
from scipy.spatial.transform import Slerp |
|
import cv2 |
|
import utils.media |
|
import utils.fast_render |
|
|
|
def write_wav_names_to_csv(folder_path, csv_path): |
|
""" |
|
Traverse a folder and write the base names of all .wav files to a CSV file. |
|
|
|
:param folder_path: Path to the folder to traverse. |
|
:param csv_path: Path to the CSV file to write. |
|
""" |
|
|
|
with open(csv_path, mode='w', newline='') as file: |
|
writer = csv.writer(file) |
|
|
|
writer.writerow(['id', 'type']) |
|
|
|
|
|
for root, dirs, files in os.walk(folder_path): |
|
for file in files: |
|
|
|
if file.endswith('.wav'): |
|
|
|
base_name = os.path.splitext(file)[0] |
|
|
|
writer.writerow([base_name, 'test']) |
|
|
|
def resize_motion_sequence_tensor(sequence, target_frames): |
|
""" |
|
Resize a batch of 8-frame motion sequences to a specified number of frames using interpolation. |
|
|
|
:param sequence: A (bs, 8, 165) tensor representing a batch of 8-frame motion sequences |
|
:param target_frames: An integer representing the desired number of frames in the output sequences |
|
:return: A (bs, target_frames, 165) tensor representing the resized motion sequences |
|
""" |
|
bs, _, _ = sequence.shape |
|
|
|
|
|
original_time = torch.linspace(0, 1, 8, device=sequence.device).view(1, -1, 1) |
|
target_time = torch.linspace(0, 1, target_frames, device=sequence.device).view(1, -1, 1) |
|
|
|
|
|
sequence = sequence.permute(0, 2, 1) |
|
|
|
|
|
resized_sequence = torch.nn.functional.interpolate(sequence, size=target_frames, mode='linear', align_corners=True) |
|
|
|
|
|
resized_sequence = resized_sequence.permute(0, 2, 1) |
|
|
|
return resized_sequence |
|
|
|
def adjust_speed_according_to_ratio_tensor(chunks): |
|
""" |
|
Adjust the playback speed within a batch of 32-frame chunks according to random intervals. |
|
|
|
:param chunks: A (bs, 32, 165) tensor representing a batch of motion chunks |
|
:return: A (bs, 32, 165) tensor representing the motion chunks after speed adjustment |
|
""" |
|
bs, _, _ = chunks.shape |
|
|
|
|
|
equal_intervals = torch.chunk(chunks, 4, dim=1) |
|
|
|
|
|
success = 0 |
|
all_success = [] |
|
|
|
|
|
while success != 1: |
|
sample_points = sorted(random.sample(range(1, 32), 3)) |
|
new_intervals_boundaries = [0] + sample_points + [32] |
|
new_intervals = [chunks[0][new_intervals_boundaries[i]:new_intervals_boundaries[i+1]] for i in range(4)] |
|
speed_ratios = [8 / len(new_interval) for new_interval in new_intervals] |
|
|
|
if all([0.33 <= speed_ratio <= 3 for speed_ratio in speed_ratios]): |
|
success += 1 |
|
all_success.append(new_intervals_boundaries) |
|
new_intervals_boundaries = torch.from_numpy(np.array(all_success)) |
|
|
|
all_shapes = new_intervals_boundaries[:, 1:] - new_intervals_boundaries[:, :-1] |
|
|
|
adjusted_intervals = [] |
|
|
|
for i in range(4): |
|
adjusted_interval = resize_motion_sequence_tensor(equal_intervals[i], all_shapes[0, i]) |
|
adjusted_intervals.append(adjusted_interval) |
|
|
|
|
|
adjusted_chunk = torch.cat(adjusted_intervals, dim=1) |
|
|
|
return adjusted_chunk |
|
|
|
def compute_exact_iou(bbox1, bbox2): |
|
x1 = max(bbox1[0], bbox2[0]) |
|
y1 = max(bbox1[1], bbox2[1]) |
|
x2 = min(bbox1[0] + bbox1[2], bbox2[0] + bbox2[2]) |
|
y2 = min(bbox1[1] + bbox1[3], bbox2[1] + bbox2[3]) |
|
|
|
intersection_area = max(0, x2 - x1) * max(0, y2 - y1) |
|
bbox1_area = bbox1[2] * bbox1[3] |
|
bbox2_area = bbox2[2] * bbox2[3] |
|
union_area = bbox1_area + bbox2_area - intersection_area |
|
|
|
if union_area == 0: |
|
return 0 |
|
|
|
return intersection_area / union_area |
|
|
|
def compute_iou(mask1, mask2): |
|
|
|
intersection = np.logical_and(mask1, mask2).sum() |
|
|
|
|
|
union = np.logical_or(mask1, mask2).sum() |
|
|
|
|
|
iou = intersection / union |
|
|
|
return iou |
|
|
|
def blankblending(all_frames, x, n): |
|
return all_frames[x:x+n+1] |
|
|
|
def synthesize_intermediate_frames_FILM(frame1, frame2, t, name, save_path): |
|
import replicate |
|
from urllib.request import urlretrieve |
|
import os |
|
cv2.imwrite(save_path[:-9]+name+"_frame1.png", frame1) |
|
cv2.imwrite(save_path[:-9]+name+"_frame2.png", frame2) |
|
os.environ["REPLICATE_API_TOKEN"] = "r8_He1rkPk9GAxNQ3LpOohK8sYw1SUfMYV3Fxk9b" |
|
output = replicate.run( |
|
"google-research/frame-interpolation:4f88a16a13673a8b589c18866e540556170a5bcb2ccdc12de556e800e9456d3d", |
|
input={ |
|
"frame1": open(save_path[:-9]+name+"_frame1.png", "rb"), |
|
"frame2": open(save_path[:-9]+name+"_frame2.png", "rb"), |
|
"times_to_interpolate": t, |
|
} |
|
) |
|
print(output) |
|
urlretrieve(output, save_path[:-9]+name+"_inter.mp4") |
|
return load_video_as_numpy_array(save_path[:-9]+name+"_inter.mp4") |
|
|
|
def load_video_as_numpy_array(video_path): |
|
cap = cv2.VideoCapture(video_path) |
|
|
|
|
|
frames = [frame for ret, frame in iter(lambda: cap.read(), (False, None)) if ret] |
|
|
|
cap.release() |
|
|
|
return np.array(frames) |
|
|
|
def synthesize_intermediate_frames_bidirectional(all_frames, x, n): |
|
frame1 = all_frames[x] |
|
frame2 = all_frames[x + n] |
|
|
|
|
|
gray1 = cv2.cvtColor(frame1, cv2.COLOR_BGR2GRAY) |
|
gray2 = cv2.cvtColor(frame2, cv2.COLOR_BGR2GRAY) |
|
|
|
|
|
forward_flow = cv2.calcOpticalFlowFarneback(gray1, gray2, None, 0.5, 3, 15, 3, 5, 1.2, 0) |
|
backward_flow = cv2.calcOpticalFlowFarneback(gray2, gray1, None, 0.5, 3, 15, 3, 5, 1.2, 0) |
|
|
|
synthesized_frames = [] |
|
for i in range(1, n): |
|
alpha = i / n |
|
|
|
|
|
intermediate_forward_flow = forward_flow * alpha |
|
intermediate_backward_flow = backward_flow * (1 - alpha) |
|
|
|
|
|
h, w = frame1.shape[:2] |
|
flow_map = np.column_stack((np.repeat(np.arange(h), w), np.tile(np.arange(w), h))) |
|
forward_displacement = flow_map + intermediate_forward_flow.reshape(-1, 2) |
|
backward_displacement = flow_map - intermediate_backward_flow.reshape(-1, 2) |
|
|
|
|
|
remap_x_forward, remap_y_forward = np.clip(forward_displacement[:, 1], 0, w - 1), np.clip(forward_displacement[:, 0], 0, h - 1) |
|
remap_x_backward, remap_y_backward = np.clip(backward_displacement[:, 1], 0, w - 1), np.clip(backward_displacement[:, 0], 0, h - 1) |
|
|
|
warped_forward = cv2.remap(frame1, remap_x_forward.reshape(h, w).astype(np.float32), remap_y_forward.reshape(h, w).astype(np.float32), interpolation=cv2.INTER_LINEAR) |
|
warped_backward = cv2.remap(frame2, remap_x_backward.reshape(h, w).astype(np.float32), remap_y_backward.reshape(h, w).astype(np.float32), interpolation=cv2.INTER_LINEAR) |
|
|
|
|
|
intermediate_frame = cv2.addWeighted(warped_forward, 1 - alpha, warped_backward, alpha, 0) |
|
synthesized_frames.append(intermediate_frame) |
|
|
|
return synthesized_frames |
|
|
|
|
|
def linear_interpolate_frames(all_frames, x, n): |
|
frame1 = all_frames[x] |
|
frame2 = all_frames[x + n] |
|
|
|
synthesized_frames = [] |
|
for i in range(1, n): |
|
alpha = i / (n) |
|
inter_frame = cv2.addWeighted(frame1, 1 - alpha, frame2, alpha, 0) |
|
synthesized_frames.append(inter_frame) |
|
return synthesized_frames[:-1] |
|
|
|
def warp_frame(src_frame, flow): |
|
h, w = flow.shape[:2] |
|
flow_map = np.column_stack((np.repeat(np.arange(h), w), np.tile(np.arange(w), h))) |
|
displacement = flow_map + flow.reshape(-1, 2) |
|
|
|
|
|
x_coords = np.clip(displacement[:, 1], 0, w - 1).reshape(h, w).astype(np.float32) |
|
y_coords = np.clip(displacement[:, 0], 0, h - 1).reshape(h, w).astype(np.float32) |
|
|
|
|
|
warped_frame = cv2.remap(src_frame, x_coords, y_coords, interpolation=cv2.INTER_LINEAR) |
|
|
|
return warped_frame |
|
|
|
def synthesize_intermediate_frames(all_frames, x, n): |
|
|
|
frame1 = cv2.cvtColor(all_frames[x], cv2.COLOR_BGR2GRAY) |
|
frame2 = cv2.cvtColor(all_frames[x + n], cv2.COLOR_BGR2GRAY) |
|
flow = cv2.calcOpticalFlowFarneback(frame1, frame2, None, 0.5, 3, 15, 3, 5, 1.2, 0) |
|
|
|
synthesized_frames = [] |
|
for i in range(1, n): |
|
alpha = i / (n) |
|
intermediate_flow = flow * alpha |
|
intermediate_frame = warp_frame(all_frames[x], intermediate_flow) |
|
synthesized_frames.append(intermediate_frame) |
|
|
|
return synthesized_frames |
|
|
|
|
|
def map2color(s): |
|
m = hashlib.md5() |
|
m.update(s.encode('utf-8')) |
|
color_code = m.hexdigest()[:6] |
|
return '#' + color_code |
|
|
|
def euclidean_distance(a, b): |
|
return np.sqrt(np.sum((a - b)**2)) |
|
|
|
def adjust_array(x, k): |
|
len_x = len(x) |
|
len_k = len(k) |
|
|
|
|
|
if len_x < len_k: |
|
return np.pad(x, (0, len_k - len_x), 'constant') |
|
|
|
|
|
elif len_x > len_k: |
|
return x[:len_k] |
|
|
|
|
|
else: |
|
return x |
|
|
|
def onset_to_frame(onset_times, audio_length, fps): |
|
|
|
total_frames = int(audio_length * fps) |
|
|
|
|
|
frame_array = np.zeros(total_frames, dtype=np.int32) |
|
|
|
|
|
for onset in onset_times: |
|
frame_num = int(onset * fps) |
|
|
|
if 0 <= frame_num < total_frames: |
|
frame_array[frame_num] = 1 |
|
|
|
return frame_array |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def smooth_rotvec_animations(animation1, animation2, blend_frames): |
|
""" |
|
Smoothly transition between two animation clips using SLERP. |
|
|
|
Parameters: |
|
- animation1: The first animation clip, a numpy array of shape [n, k]. |
|
- animation2: The second animation clip, a numpy array of shape [n, k]. |
|
- blend_frames: Number of frames over which to blend the two animations. |
|
|
|
Returns: |
|
- A smoothly blended animation clip of shape [2n, k]. |
|
""" |
|
|
|
|
|
n1, k1 = animation1.shape |
|
n2, k2 = animation2.shape |
|
animation1 = animation1.reshape(n1, k1//3, 3) |
|
animation2 = animation2.reshape(n2, k2//3, 3) |
|
blend_frames = min(blend_frames, len(animation1), len(animation2)) |
|
all_int = [] |
|
for i in range(k1//3): |
|
|
|
q = R.from_rotvec(np.concatenate([animation1[0:1, i], animation2[-2:-1, i]], axis=0)) |
|
|
|
times = [0, blend_frames * 2 - 1] |
|
slerp = Slerp(times, q) |
|
interpolated = slerp(np.arange(blend_frames * 2)) |
|
interpolated_rotvecs = interpolated.as_rotvec() |
|
all_int.append(interpolated_rotvecs) |
|
interpolated_rotvecs = np.concatenate(all_int, axis=1) |
|
|
|
result = interpolated_rotvecs.reshape(2*n1, k1) |
|
return result |
|
|
|
def smooth_animations(animation1, animation2, blend_frames): |
|
""" |
|
Smoothly transition between two animation clips using linear interpolation. |
|
|
|
Parameters: |
|
- animation1: The first animation clip, a numpy array of shape [n, k]. |
|
- animation2: The second animation clip, a numpy array of shape [n, k]. |
|
- blend_frames: Number of frames over which to blend the two animations. |
|
|
|
Returns: |
|
- A smoothly blended animation clip of shape [2n, k]. |
|
""" |
|
|
|
|
|
blend_frames = min(blend_frames, len(animation1), len(animation2)) |
|
|
|
|
|
overlap_a1 = animation1[-blend_frames:-blend_frames+1, :] |
|
overlap_a2 = animation2[blend_frames-1:blend_frames, :] |
|
|
|
|
|
alpha = np.linspace(0, 1, 2 * blend_frames).reshape(-1, 1) |
|
|
|
|
|
blended_overlap = overlap_a1 * (1 - alpha) + overlap_a2 * alpha |
|
|
|
|
|
if blend_frames == len(animation1) and blend_frames == len(animation2): |
|
result = blended_overlap |
|
else: |
|
before_blend = animation1[:-blend_frames] |
|
after_blend = animation2[blend_frames:] |
|
result = np.vstack((before_blend, blended_overlap, after_blend)) |
|
return result |
|
|
|
def interpolate_sequence(quaternions): |
|
bs, n, j, _ = quaternions.shape |
|
new_n = 2 * n |
|
new_quaternions = torch.zeros((bs, new_n, j, 4), device=quaternions.device, dtype=quaternions.dtype) |
|
|
|
for i in range(n): |
|
q1 = quaternions[:, i, :, :] |
|
new_quaternions[:, 2*i, :, :] = q1 |
|
|
|
if i < n - 1: |
|
q2 = quaternions[:, i + 1, :, :] |
|
new_quaternions[:, 2*i + 1, :, :] = slerp(q1, q2, 0.5) |
|
else: |
|
|
|
new_quaternions[:, 2*i + 1, :, :] = q1 |
|
|
|
return new_quaternions |
|
|
|
def quaternion_multiply(q1, q2): |
|
w1, x1, y1, z1 = q1 |
|
w2, x2, y2, z2 = q2 |
|
w = w1 * w2 - x1 * x2 - y1 * y2 - z1 * z2 |
|
x = w1 * x2 + x1 * w2 + y1 * z2 - z1 * y2 |
|
y = w1 * y2 + y1 * w2 + z1 * x2 - x1 * z2 |
|
z = w1 * z2 + z1 * w2 + x1 * y2 - y1 * x2 |
|
return w, x, y, z |
|
|
|
def quaternion_conjugate(q): |
|
w, x, y, z = q |
|
return (w, -x, -y, -z) |
|
|
|
def slerp(q1, q2, t): |
|
dot = torch.sum(q1 * q2, dim=-1, keepdim=True) |
|
|
|
flip = (dot < 0).float() |
|
q2 = (1 - flip * 2) * q2 |
|
dot = dot * (1 - flip * 2) |
|
|
|
DOT_THRESHOLD = 0.9995 |
|
mask = (dot > DOT_THRESHOLD).float() |
|
|
|
theta_0 = torch.acos(dot) |
|
theta = theta_0 * t |
|
|
|
q3 = q2 - q1 * dot |
|
q3 = q3 / torch.norm(q3, dim=-1, keepdim=True) |
|
|
|
interpolated = (torch.cos(theta) * q1 + torch.sin(theta) * q3) |
|
|
|
return mask * (q1 + t * (q2 - q1)) + (1 - mask) * interpolated |
|
|
|
def estimate_linear_velocity(data_seq, dt): |
|
''' |
|
Given some batched data sequences of T timesteps in the shape (B, T, ...), estimates |
|
the velocity for the middle T-2 steps using a second order central difference scheme. |
|
The first and last frames are with forward and backward first-order |
|
differences, respectively |
|
- h : step size |
|
''' |
|
|
|
init_vel = (data_seq[:, 1:2] - data_seq[:, :1]) / dt |
|
|
|
middle_vel = (data_seq[:, 2:] - data_seq[:, 0:-2]) / (2 * dt) |
|
|
|
final_vel = (data_seq[:, -1:] - data_seq[:, -2:-1]) / dt |
|
|
|
vel_seq = torch.cat([init_vel, middle_vel, final_vel], dim=1) |
|
return vel_seq |
|
|
|
def velocity2position(data_seq, dt, init_pos): |
|
res_trans = [] |
|
for i in range(data_seq.shape[1]): |
|
if i == 0: |
|
res_trans.append(init_pos.unsqueeze(1)) |
|
else: |
|
res = data_seq[:, i-1:i] * dt + res_trans[-1] |
|
res_trans.append(res) |
|
return torch.cat(res_trans, dim=1) |
|
|
|
def estimate_angular_velocity(rot_seq, dt): |
|
''' |
|
Given a batch of sequences of T rotation matrices, estimates angular velocity at T-2 steps. |
|
Input sequence should be of shape (B, T, ..., 3, 3) |
|
''' |
|
|
|
dRdt = estimate_linear_velocity(rot_seq, dt) |
|
R = rot_seq |
|
RT = R.transpose(-1, -2) |
|
|
|
w_mat = torch.matmul(dRdt, RT) |
|
|
|
w_x = (-w_mat[..., 1, 2] + w_mat[..., 2, 1]) / 2.0 |
|
w_y = (w_mat[..., 0, 2] - w_mat[..., 2, 0]) / 2.0 |
|
w_z = (-w_mat[..., 0, 1] + w_mat[..., 1, 0]) / 2.0 |
|
w = torch.stack([w_x, w_y, w_z], axis=-1) |
|
return w |
|
|
|
def image_from_bytes(image_bytes): |
|
import matplotlib.image as mpimg |
|
from io import BytesIO |
|
return mpimg.imread(BytesIO(image_bytes), format='PNG') |
|
|
|
def process_frame(i, vertices_all, vertices1_all, faces, output_dir, filenames): |
|
import matplotlib |
|
matplotlib.use('Agg') |
|
import matplotlib.pyplot as plt |
|
import trimesh |
|
import pyrender |
|
|
|
def deg_to_rad(degrees): |
|
return degrees * np.pi / 180 |
|
|
|
uniform_color = [220, 220, 220, 255] |
|
resolution = (1000, 1000) |
|
figsize = (10, 10) |
|
|
|
fig, axs = plt.subplots( |
|
nrows=1, |
|
ncols=2, |
|
figsize=(figsize[0] * 2, figsize[1] * 1) |
|
) |
|
axs = axs.flatten() |
|
|
|
vertices = vertices_all[i] |
|
vertices1 = vertices1_all[i] |
|
filename = f"{output_dir}frame_{i}.png" |
|
filenames.append(filename) |
|
if i%100 == 0: |
|
print('processed', i, 'frames') |
|
|
|
|
|
angle_rad = deg_to_rad(-2) |
|
pose_camera = np.array([ |
|
[1.0, 0.0, 0.0, 0.0], |
|
[0.0, np.cos(angle_rad), -np.sin(angle_rad), 1.0], |
|
[0.0, np.sin(angle_rad), np.cos(angle_rad), 5.0], |
|
[0.0, 0.0, 0.0, 1.0] |
|
]) |
|
angle_rad = deg_to_rad(-30) |
|
pose_light = np.array([ |
|
[1.0, 0.0, 0.0, 0.0], |
|
[0.0, np.cos(angle_rad), -np.sin(angle_rad), 0.0], |
|
[0.0, np.sin(angle_rad), np.cos(angle_rad), 3.0], |
|
[0.0, 0.0, 0.0, 1.0] |
|
]) |
|
|
|
for vtx_idx, vtx in enumerate([vertices, vertices1]): |
|
trimesh_mesh = trimesh.Trimesh( |
|
vertices=vtx, |
|
faces=faces, |
|
vertex_colors=uniform_color |
|
) |
|
mesh = pyrender.Mesh.from_trimesh( |
|
trimesh_mesh, smooth=True |
|
) |
|
scene = pyrender.Scene() |
|
scene.add(mesh) |
|
camera = pyrender.OrthographicCamera(xmag=1.0, ymag=1.0) |
|
scene.add(camera, pose=pose_camera) |
|
light = pyrender.DirectionalLight(color=[1.0, 1.0, 1.0], intensity=4.0) |
|
scene.add(light, pose=pose_light) |
|
renderer = pyrender.OffscreenRenderer(*resolution) |
|
color, _ = renderer.render(scene) |
|
axs[vtx_idx].imshow(color) |
|
axs[vtx_idx].axis('off') |
|
renderer.delete() |
|
|
|
plt.savefig(filename, bbox_inches='tight') |
|
plt.close(fig) |
|
|
|
def generate_images(frames, vertices_all, vertices1_all, faces, output_dir, filenames): |
|
import multiprocessing |
|
|
|
num_cores = multiprocessing.cpu_count() - 1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for i in range(frames): |
|
process_frame(i*3, vertices_all, vertices1_all, faces, output_dir, filenames) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def render_one_sequence( |
|
res_npz_path, |
|
gt_npz_path, |
|
output_dir, |
|
audio_path, |
|
model_folder="/data/datasets/smplx_models/", |
|
model_type='smplx', |
|
gender='NEUTRAL_2020', |
|
ext='npz', |
|
num_betas=300, |
|
num_expression_coeffs=100, |
|
use_face_contour=False, |
|
use_matplotlib=False, |
|
args=None): |
|
import smplx |
|
import matplotlib.pyplot as plt |
|
import imageio |
|
from tqdm import tqdm |
|
import os |
|
import numpy as np |
|
import torch |
|
import moviepy.editor as mp |
|
import librosa |
|
|
|
model = smplx.create(model_folder, model_type=model_type, |
|
gender=gender, use_face_contour=use_face_contour, |
|
num_betas=num_betas, |
|
num_expression_coeffs=num_expression_coeffs, |
|
ext=ext, use_pca=False).cuda() |
|
|
|
|
|
data_np_body = np.load(res_npz_path, allow_pickle=True) |
|
gt_np_body = np.load(gt_npz_path, allow_pickle=True) |
|
|
|
if not os.path.exists(output_dir): os.makedirs(output_dir) |
|
|
|
|
|
|
|
from pyvirtualdisplay import Display |
|
|
|
|
|
|
|
faces = np.load(f"{model_folder}/smplx/SMPLX_NEUTRAL_2020.npz", allow_pickle=True)["f"] |
|
seconds = 1 |
|
|
|
n = data_np_body["poses"].shape[0] |
|
beta = torch.from_numpy(data_np_body["betas"]).to(torch.float32).unsqueeze(0).cuda() |
|
beta = beta.repeat(n, 1) |
|
expression = torch.from_numpy(data_np_body["expressions"][:n]).to(torch.float32).cuda() |
|
jaw_pose = torch.from_numpy(data_np_body["poses"][:n, 66:69]).to(torch.float32).cuda() |
|
pose = torch.from_numpy(data_np_body["poses"][:n]).to(torch.float32).cuda() |
|
transl = torch.from_numpy(data_np_body["trans"][:n]).to(torch.float32).cuda() |
|
|
|
output = model(betas=beta, transl=transl, expression=expression, jaw_pose=jaw_pose, |
|
global_orient=pose[:,:3], body_pose=pose[:,3:21*3+3], left_hand_pose=pose[:,25*3:40*3], right_hand_pose=pose[:,40*3:55*3], |
|
leye_pose=pose[:, 69:72], |
|
reye_pose=pose[:, 72:75], |
|
return_verts=True) |
|
vertices_all = output["vertices"].cpu().detach().numpy() |
|
|
|
beta1 = torch.from_numpy(gt_np_body["betas"]).to(torch.float32).unsqueeze(0).cuda() |
|
expression1 = torch.from_numpy(gt_np_body["expressions"][:n]).to(torch.float32).cuda() |
|
jaw_pose1 = torch.from_numpy(gt_np_body["poses"][:n,66:69]).to(torch.float32).cuda() |
|
pose1 = torch.from_numpy(gt_np_body["poses"][:n]).to(torch.float32).cuda() |
|
transl1 = torch.from_numpy(gt_np_body["trans"][:n]).to(torch.float32).cuda() |
|
output1 = model(betas=beta1, transl=transl1, expression=expression1, jaw_pose=jaw_pose1, global_orient=pose1[:,:3], body_pose=pose1[:,3:21*3+3], left_hand_pose=pose1[:,25*3:40*3], right_hand_pose=pose1[:,40*3:55*3], |
|
leye_pose=pose1[:, 69:72], |
|
reye_pose=pose1[:, 72:75],return_verts=True) |
|
vertices1_all = output1["vertices"].cpu().detach().numpy() |
|
if args.debug: |
|
seconds = 1 |
|
else: |
|
seconds = vertices_all.shape[0]//30 |
|
silent_video_file_path = utils.fast_render.generate_silent_videos(args.render_video_fps, |
|
args.render_video_width, |
|
args.render_video_height, |
|
args.render_concurrent_num, |
|
args.render_tmp_img_filetype, |
|
int(seconds*args.render_video_fps), |
|
vertices_all, |
|
vertices1_all, |
|
faces, |
|
output_dir) |
|
base_filename_without_ext = os.path.splitext(os.path.basename(res_npz_path))[0] |
|
final_clip = os.path.join(output_dir, f"{base_filename_without_ext}.mp4") |
|
utils.media.add_audio_to_video(silent_video_file_path, audio_path, final_clip) |
|
os.remove(silent_video_file_path) |
|
return final_clip |
|
|
|
def render_one_sequence_no_gt( |
|
res_npz_path, |
|
output_dir, |
|
audio_path, |
|
model_folder="/data/datasets/smplx_models/", |
|
model_type='smplx', |
|
gender='NEUTRAL_2020', |
|
ext='npz', |
|
num_betas=300, |
|
num_expression_coeffs=100, |
|
use_face_contour=False, |
|
use_matplotlib=False, |
|
args=None): |
|
import smplx |
|
import matplotlib.pyplot as plt |
|
import imageio |
|
from tqdm import tqdm |
|
import os |
|
import numpy as np |
|
import torch |
|
import moviepy.editor as mp |
|
import librosa |
|
|
|
model = smplx.create(model_folder, model_type=model_type, |
|
gender=gender, use_face_contour=use_face_contour, |
|
num_betas=num_betas, |
|
num_expression_coeffs=num_expression_coeffs, |
|
ext=ext, use_pca=False).cuda() |
|
|
|
|
|
data_np_body = np.load(res_npz_path, allow_pickle=True) |
|
|
|
|
|
if not os.path.exists(output_dir): os.makedirs(output_dir) |
|
|
|
|
|
|
|
from pyvirtualdisplay import Display |
|
|
|
|
|
|
|
faces = np.load(f"{model_folder}/smplx/SMPLX_NEUTRAL_2020.npz", allow_pickle=True)["f"] |
|
seconds = 1 |
|
|
|
n = data_np_body["poses"].shape[0] |
|
beta = torch.from_numpy(data_np_body["betas"]).to(torch.float32).unsqueeze(0).cuda() |
|
beta = beta.repeat(n, 1) |
|
expression = torch.from_numpy(data_np_body["expressions"][:n]).to(torch.float32).cuda() |
|
jaw_pose = torch.from_numpy(data_np_body["poses"][:n, 66:69]).to(torch.float32).cuda() |
|
pose = torch.from_numpy(data_np_body["poses"][:n]).to(torch.float32).cuda() |
|
transl = torch.from_numpy(data_np_body["trans"][:n]).to(torch.float32).cuda() |
|
|
|
output = model(betas=beta, transl=transl, expression=expression, jaw_pose=jaw_pose, |
|
global_orient=pose[:,:3], body_pose=pose[:,3:21*3+3], left_hand_pose=pose[:,25*3:40*3], right_hand_pose=pose[:,40*3:55*3], |
|
leye_pose=pose[:, 69:72], |
|
reye_pose=pose[:, 72:75], |
|
return_verts=True) |
|
vertices_all = output["vertices"].cpu().detach().numpy() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if args.debug: |
|
seconds = 1 |
|
else: |
|
seconds = vertices_all.shape[0]//30 |
|
silent_video_file_path = utils.fast_render.generate_silent_videos_no_gt(args.render_video_fps, |
|
args.render_video_width, |
|
args.render_video_height, |
|
args.render_concurrent_num, |
|
args.render_tmp_img_filetype, |
|
int(seconds*args.render_video_fps), |
|
vertices_all, |
|
faces, |
|
output_dir) |
|
base_filename_without_ext = os.path.splitext(os.path.basename(res_npz_path))[0] |
|
final_clip = os.path.join(output_dir, f"{base_filename_without_ext}.mp4") |
|
utils.media.add_audio_to_video(silent_video_file_path, audio_path, final_clip) |
|
os.remove(silent_video_file_path) |
|
return final_clip |
|
|
|
def print_exp_info(args): |
|
logger.info(pprint.pformat(vars(args))) |
|
logger.info(f"# ------------ {args.name} ----------- #") |
|
logger.info("PyTorch version: {}".format(torch.__version__)) |
|
logger.info("CUDA version: {}".format(torch.version.cuda)) |
|
logger.info("{} GPUs".format(torch.cuda.device_count())) |
|
logger.info(f"Random Seed: {args.random_seed}") |
|
|
|
def args2csv(args, get_head=False, list4print=[]): |
|
for k, v in args.items(): |
|
if isinstance(args[k], dict): |
|
args2csv(args[k], get_head, list4print) |
|
else: list4print.append(k) if get_head else list4print.append(v) |
|
return list4print |
|
|
|
class EpochTracker: |
|
def __init__(self, metric_names, metric_directions): |
|
assert len(metric_names) == len(metric_directions), "Metric names and directions should have the same length" |
|
|
|
|
|
self.metric_names = metric_names |
|
self.states = ['train', 'val', 'test'] |
|
self.types = ['last', 'best'] |
|
|
|
|
|
self.values = {name: {state: {type_: {'value': np.inf if not is_higher_better else -np.inf, 'epoch': 0} |
|
for type_ in self.types} |
|
for state in self.states} |
|
for name, is_higher_better in zip(metric_names, metric_directions)} |
|
|
|
self.loss_meters = {name: {state: AverageMeter(f"{name}_{state}") |
|
for state in self.states} |
|
for name in metric_names} |
|
|
|
|
|
self.is_higher_better = {name: direction for name, direction in zip(metric_names, metric_directions)} |
|
self.train_history = {name: [] for name in metric_names} |
|
self.val_history = {name: [] for name in metric_names} |
|
|
|
|
|
def update_meter(self, name, state, value): |
|
self.loss_meters[name][state].update(value) |
|
|
|
|
|
def update_values(self, name, state, epoch): |
|
value_avg = self.loss_meters[name][state].avg |
|
new_best = False |
|
|
|
|
|
if ((value_avg < self.values[name][state]['best']['value'] and not self.is_higher_better[name]) or |
|
(value_avg > self.values[name][state]['best']['value'] and self.is_higher_better[name])): |
|
self.values[name][state]['best']['value'] = value_avg |
|
self.values[name][state]['best']['epoch'] = epoch |
|
new_best = True |
|
self.values[name][state]['last']['value'] = value_avg |
|
self.values[name][state]['last']['epoch'] = epoch |
|
return new_best |
|
|
|
|
|
def get(self, name, state, type_): |
|
return self.values[name][state][type_] |
|
|
|
|
|
def reset(self): |
|
for name in self.metric_names: |
|
for state in self.states: |
|
self.loss_meters[name][state].reset() |
|
|
|
|
|
def flatten_values(self): |
|
flat_dict = {} |
|
for name in self.metric_names: |
|
for state in self.states: |
|
for type_ in self.types: |
|
value_key = f"{name}_{state}_{type_}" |
|
epoch_key = f"{name}_{state}_{type_}_epoch" |
|
flat_dict[value_key] = self.values[name][state][type_]['value'] |
|
flat_dict[epoch_key] = self.values[name][state][type_]['epoch'] |
|
return flat_dict |
|
|
|
def update_and_plot(self, name, epoch, save_path): |
|
new_best_train = self.update_values(name, 'train', epoch) |
|
new_best_val = self.update_values(name, 'val', epoch) |
|
|
|
|
|
self.train_history[name].append(self.loss_meters[name]['train'].avg) |
|
self.val_history[name].append(self.loss_meters[name]['val'].avg) |
|
|
|
|
|
train_values = self.train_history[name] |
|
val_values = self.val_history[name] |
|
epochs = list(range(1, len(train_values) + 1)) |
|
|
|
|
|
plt.figure(figsize=(10, 6)) |
|
plt.plot(epochs, train_values, label='Train') |
|
plt.plot(epochs, val_values, label='Val') |
|
plt.title(f'Train vs Val {name} over epochs') |
|
plt.xlabel('Epochs') |
|
plt.ylabel(name) |
|
plt.legend() |
|
plt.savefig(save_path) |
|
plt.close() |
|
|
|
|
|
return new_best_train, new_best_val |
|
|
|
def record_trial(args, tracker): |
|
""" |
|
1. record notes, score, env_name, experments_path, |
|
""" |
|
csv_path = args.out_path + "custom/" +args.csv_name+".csv" |
|
all_print_dict = vars(args) |
|
all_print_dict.update(tracker.flatten_values()) |
|
if not os.path.exists(csv_path): |
|
pd.DataFrame([all_print_dict]).to_csv(csv_path, index=False) |
|
else: |
|
df_existing = pd.read_csv(csv_path) |
|
df_new = pd.DataFrame([all_print_dict]) |
|
df_aligned = df_existing.append(df_new).fillna("") |
|
df_aligned.to_csv(csv_path, index=False) |
|
|
|
def set_random_seed(args): |
|
os.environ['PYTHONHASHSEED'] = str(args.random_seed) |
|
random.seed(args.random_seed) |
|
np.random.seed(args.random_seed) |
|
torch.manual_seed(args.random_seed) |
|
torch.cuda.manual_seed_all(args.random_seed) |
|
torch.cuda.manual_seed(args.random_seed) |
|
torch.backends.cudnn.deterministic = args.deterministic |
|
torch.backends.cudnn.benchmark = args.benchmark |
|
torch.backends.cudnn.enabled = args.cudnn_enabled |
|
|
|
def save_checkpoints(save_path, model, opt=None, epoch=None, lrs=None): |
|
if lrs is not None: |
|
states = { 'model_state': model.state_dict(), |
|
'epoch': epoch + 1, |
|
'opt_state': opt.state_dict(), |
|
'lrs':lrs.state_dict(),} |
|
elif opt is not None: |
|
states = { 'model_state': model.state_dict(), |
|
'epoch': epoch + 1, |
|
'opt_state': opt.state_dict(),} |
|
else: |
|
states = { 'model_state': model.state_dict(),} |
|
torch.save(states, save_path) |
|
|
|
def load_checkpoints(model, save_path, load_name='model'): |
|
states = torch.load(save_path) |
|
new_weights = OrderedDict() |
|
flag=False |
|
for k, v in states['model_state'].items(): |
|
|
|
if "module" not in k: |
|
break |
|
else: |
|
new_weights[k[7:]]=v |
|
flag=True |
|
if flag: |
|
try: |
|
model.load_state_dict(new_weights) |
|
except: |
|
|
|
model.load_state_dict(states['model_state']) |
|
else: |
|
model.load_state_dict(states['model_state']) |
|
logger.info(f"load self-pretrained checkpoints for {load_name}") |
|
|
|
def model_complexity(model, args): |
|
from ptflops import get_model_complexity_info |
|
flops, params = get_model_complexity_info(model, (args.T_GLOBAL._DIM, args.TRAIN.CROP, args.TRAIN), |
|
as_strings=False, print_per_layer_stat=False) |
|
logging.info('{:<30} {:<8} BFlops'.format('Computational complexity: ', flops / 1e9)) |
|
logging.info('{:<30} {:<8} MParams'.format('Number of parameters: ', params / 1e6)) |
|
|
|
class AverageMeter(object): |
|
"""Computes and stores the average and current value""" |
|
def __init__(self, name, fmt=':f'): |
|
self.name = name |
|
self.fmt = fmt |
|
self.reset() |
|
|
|
def reset(self): |
|
self.val = 0 |
|
self.avg = 0 |
|
self.sum = 0 |
|
self.count = 0 |
|
|
|
def update(self, val, n=1): |
|
self.val = val |
|
self.sum += val * n |
|
self.count += n |
|
self.avg = self.sum / self.count |
|
|
|
def __str__(self): |
|
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})' |
|
return fmtstr.format(**self.__dict__) |